Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Acc Chem Res ; 52(6): 1565-1574, 2019 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-31181912

RESUMO

Chirality is a fascinating property present in naturally occurring and artificial molecules and materials, observable as chiroptical behavior. The emerging area of carbon nanostructures has undergone tremendous development, with a wide variety of carbon nanoforms reported over the last two decades. However, despite interest in merging chirality and nanocarbons, this has been successfully achieved only in empty fullerenes, whereas in other kinds of fullerenes or carbon nanostructures such as carbon nanotubes, graphene, and graphene quantum dots (GQDs), to name the most popular systems, it is almost unknown. Therefore, controlling chirality in carbon nanostructures currently represents a major challenge for the chemical community. In this Account, we show our progress in the synthesis of chiral molecular carbon nanostructures, namely, metallofullerenes, endohedral fullerenes, GQDs, and curved molecular nanographenes, by using asymmetric catalysis and both top-down and bottom-up chemical approaches. Furthermore, we bring in a new family of lesser-known molecular chiral bilayer nanographenes, where chirality is introduced from the starting helicene moiety and a single enantiomer of the nanographene is synthesized. Some important landmarks in the development of chiral molecular carbon nanostructures shown in this Account are the application of synthesis-tailored, enantiomerically pure metallofullerenes as catalysts for hydrogen transfer reactions and the use of endohedral fullerenes to determine the effect of the incarcerated molecule in the carbon cage on the cis-trans stereoisomerization of optically active pendent moieties. Furthermore, the first top-down synthesis of chiral GQDs by functionalization with chiral alcohols is also presented. An emerging alternative to GQDs, when the desire for purity and atomistic control outweighs the cost of multistep synthesis, is the bottom-up approach, in which molecular nanographenes are formed in precise sizes and shapes and enantiomeric control is feasible. In this regard, a singular and amazing example is given by our synthesis of a single enantiomer of the first chiral bilayer nanographene, which formally represents a new family of molecular nanographenes with chirality controlled and maintained throughout their syntheses. The aforementioned synthetic chiral nanostructures represent groundbreaking nanocarbon systems where chirality is a further dimension of structural control, paving the way to a new scenario for carbon nanoforms in which chirality selection determines the properties of these novel carbon-based materials. Fine-tuning of such properties is envisioned to impact biomedical and materials science applications.

2.
Chemistry ; 25(13): 3224-3228, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30657215

RESUMO

We report on the site-selective synthesis of PCBM-like [70]fullerene site-isomers, where the elusive ß-site-isomers are, for the first time, the major product in a (cyclo)addition chemical reaction involving [70]fullerene. The reaction involves an straightforward cyclopropanation of [70]fullerene from sulfonium salts, affording a mixture of α and ß site-isomers in good yields. Amazingly, the preference for the α- or ß-site-isomer can be efficiently controlled by means of the solvent polarity! DFT theoretical calculations (DMF and toluene) nicely predict that, although the formation of the α-adduct is, as expected, thermodynamically favored, the selectivity of the process is determined by the energy difference of the respective transition states. Furthermore, the employ of α or/and ß site-isomers, as pure materials or as a mixture of them, used as templating agent, has been evaluated in perovskite solar cells. The positive influence of the [70]fullerenes by passivating the voids/pin-holes and/or deep slits, is reflected in highly efficient and stable bulk heterojunction perovskite solar cells, whose performance (around 20 %) is slightly but consistently depending on the isomeric fullerene composition. These experimental findings pave the way to investigate a new reactivity on C70 and to explore the properties of the less-known ß-derivatives.

3.
Chemistry ; 24(49): 13020-13025, 2018 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-29956849

RESUMO

Photoinduced electron transfer in transition-metal complexes linked to a fullerene moiety is of increasing interest. Recently, several stereoisomers of an Ir-complex exhibiting configurational stability at metal center, which does not undergo epimerization have been synthesized (Angew. Chem. Int. Ed. 2017, 56, 2136). The presence of multiple electron donor and acceptor sites located at opposite ends with respect to the metallic center creates the prerequisites for the formation of entirely different charge transfer (CT) states. Here we report the results of quantum mechanical calculations and detailed analysis of excited-state properties for all stereoisomers of the junction. We found that the stereoisomers demonstrate clearly different CT properties by photoexcitation. The found photo-stereospecific effects can be used to design new hybrids with a different type of photoinduced CT state, exhibiting dissimilar activity in photocatalysis.

4.
Phys Chem Chem Phys ; 20(17): 11577-11585, 2018 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-29417103

RESUMO

Controlling the regioselectivity in the exohedral functionalization of fullerenes and endohedral metallofullerenes is essential to produce specific desired fullerene derivatives. In this work, using density functional theory (DFT) calculations, we show that the regioselectivity of the Diels-Alder (DA) cycloaddition of cyclopentadiene to 2S+1C60 changes from the usual [6,6] addition in the singlet ground state to the [5,6] attack in high spin states of C60. Changes in the aromaticity of the five- and six-membered rings when going from singlet to high spin C60 provide a rationale to understand this regioselectivity change. Experimentally, however, we find that the DA cycloaddition of isoindene to triplet C60 yields the usual [6,6] adduct. Further DFT calculations and computational analysis give an explanation to this unanticipated experimental result by showing the presence of an intersystem crossing close to the formed triplet biradical intermediate.

5.
J Org Chem ; 82(9): 4654-4660, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28406024

RESUMO

The diastereoselective synthesis of cis and trans steroid-fulleropyrrolidines hybrids by reaction of N-metalated azomethine ylides [Cu(II) or Ag(I)] with the appropriate chiral ligand and C60 is described. The experimental findings reveal that the azomethine ylide stabilized by an allylic group cycloadds to [60]fullerene in an efficient manner and with a good diastereomeric excess. Furthermore, the new generated stereocenters are fully controlled by the catalytic systems used without being influenced by the chirality of the steroid. Interestingly, by this synthetic methodology the each one of the four possible stereoisomers have efficiently been obtained and characterized by CD spectra.

6.
Angew Chem Int Ed Engl ; 56(8): 2136-2139, 2017 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-28090720

RESUMO

Chiral fullerene-metal hybrids with complete control over the four stereogenic centers, including the absolute configuration of the metal atom, have been synthesized for the first time. The stereochemistry of the four chiral centers formed during [60]fullerene functionalization is the result of both the chiral catalysts employed and the diastereoselective addition of the metal complexes used (iridium, rhodium, or ruthenium). DFT calculations underpin the observed configurational stability at the metal center, which does not undergo an epimerization process.

7.
Chemistry ; 22(38): 13627-31, 2016 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-27554067

RESUMO

Cyclobuteno[3,4:1,2][60]fullerenes have been prepared in a straightforward manner by a simple reaction between [60]fullerene and readily available allenoates or alkynoates as organic reagents under basic and mild conditions. The chemical structure of the new modified fullerenes has been determined by standard spectroscopic techniques and confirmed by X-ray diffraction analysis. Some of these new fullerene derivatives exhibit a remarkable intrinsic electron mobility (determined by using flash-photolysis time-resolved microwave conductivity (FP-TRMC) measurements), which surpasses that of the well-known phenyl-C61-butyric acid methyl ester, thus behaving as promising n-type organic semiconductors.

8.
J Am Chem Soc ; 137(3): 1190-7, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25558918

RESUMO

The stereochemical outcome of cis-trans isomerization of optically pure [60], [70], and endohedral H2O@C60 fulleropyrrolidines reveals that the electronic nature of substituents, fullerene size, and surprisingly the incarcerated water molecule plays a crucial role in this rearrangement process. Theoretical DFT calculations are in very good agreement with the experimental findings. On the basis of the experimental results and computational calculations, a plausible reaction mechanism involving the hydrogen-bonding assistance of the inner water molecule in the carbanion stabilization of endofullerene is proposed.

9.
J Am Chem Soc ; 137(6): 2318-27, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25651069

RESUMO

Single molecule charge transport characteristics of buckminsterfullerene-capped symmetric fluorene-based dumbbell-type compound 1 were investigated by scanning tunneling microscopy break junction (STM-BJ), current sensing atomic force microscopy break junction (CS-AFM-BJ), and mechanically controlled break junction (MCBJ) techniques, under ambient conditions. We also show that compound 1 is able to form highly organized defect-free surface adlayers, allowing the molecules on the surface to be addressed specifically. Two distinct single molecule conductance states (called high G(H)(1) and low G(L)(1)) were observed, depending on the pressure exerted by the probe on the junction, thus allowing molecule 1 to function as a mechanically driven molecular switch. These two distinct conductance states were attributed to the electron tunneling through the buckminsterfullerene anchoring group and fully extended molecule 1, respectively. The assignment of conductance features to these configurations was further confirmed by control experiments with asymmetrically designed buckminsterfullerene derivative 2 as well as pristine buckminsterfullerene 3, both lacking the G(L) feature.

10.
Acc Chem Res ; 47(8): 2660-70, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-25080165

RESUMO

Fullerenes are among the most studied molecules during the last three decades, and therefore, a huge number of chemical reactions have been tested on these new carbon allotropes. However, the aim of most of the reactions carried out on fullerenes has been to afford chemically modified fullerenes that are soluble in organic solvents or even water in the search for different mechanical, optical, or electronic properties. Therefore, although a lot of effort has been devoted to the chemical functionalization of these molecular allotropes of carbon, important aspects in the chemistry of fullerenes have not been properly addressed. In particular, the synthesis of chiral fullerenes at will in an efficient manner using asymmetric catalysis has not been previously addressed in fullerene science. Thus, despite the fact that the chirality of fullerenes has always been considered a fundamental issue, the lack of a general stereoselective synthetic methodology has restricted the use of enantiopure fullerene derivatives, which have usually been obtained only after highly expensive HPLC isolation on specific chiral columns or prepared from a pool of chiral starting materials. In this Account, we describe the first stereodivergent catalytic enantioselective syntheses in fullerene science, which have allowed the highly efficient synthesis of enantiomerically pure derivatives with total control of the stereochemical result using metallic catalysts and/or organocatalysts under very mild conditions. Density functional theory calculations strongly support the experimental findings for the assignment of the absolute configuration of the new stereocenters, which has also been ascertained by application of the sector rule and single-crystal X-ray diffraction. The use of the curved double bond of fullerene cages as a two-π-electron component in a variety of stereoselective cycloaddition reactions represents a challenging goal considering that, in contrast to most of the substituted olefins used in these reactions, pristine fullerene is a noncoordinating dipolarophile. The aforementioned features make the study of stereoselective 1,3-dipolar cycloadditions onto fullerenes a unique scenario to shed light onto important mechanistic aspects. On the other hand, the availability of achiral starting materials as well as the use of nonexpensive asymmetric catalysts should provide access to chiral fullerenes and their further application in a variety of different fields. In this regard, in addition to biomedical applications, chiral fullerenes are of interest in less-studied areas such as materials science, organic electronics, and nanoscience, where control of the order and morphology at the nanometer scale are critical issues for achieving better device efficiencies.

11.
Rapid Commun Mass Spectrom ; 29(6): 497-504, 2015 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-26160415

RESUMO

RATIONALE: We have investigated the fragmentation reactions of ions from bis-adducts containing isoxazolino-, pyrrolidino- and methanofullerene moieties. METHODS: The fragmentation reactions induced by collision-induced dissociation (CID) of ions generated under electrospray ionization (ESI) in positive and negative modes of detection using an ion-trap spectrometer have been investigated. RESULTS: The competitive retro-cycloaddition process between isoxazoline and pyrrolidine rings fused to [60]fullerene reveals that it is strongly dependent on the experimental negative or positive ESI experimental conditions. Thus, whereas retro-cycloaddition reaction is favored in the pyrrolidine ring under negative conditions, the protonation occurring on the nitrogen atom of the pyrrolidine ring under positive conditions precludes its retro-cycloaddition and, therefore, only the isoxazoline ring undergoes the retro-cycloaddition process. The obtained experimental results are different from those reported when the reaction is carried out under thermal conditions. Competitive retro-cycloaddition reactions of isoxazolino- and methanofullerenes show that the heterocyclic ring undergoes cycloelimination, leaving the methanofullerene moiety unchanged. In this case, the same selectivity is observed under thermal and gas-phase conditions. CONCLUSIONS: The observed selectivity in the heterocyclic removal in these [60]fullerene derivatives is reversed from negative conditions (radical anions) to positive conditions (protonated molecules). Moreover, the retro-cycloaddition reaction behaves differently under spectrometric and thermal conditions.

12.
J Am Chem Soc ; 136(7): 2897-904, 2014 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-24483247

RESUMO

Novel chiral catalytic systems based on both organic compounds and metal salts have been developed for the enantioselective [3 + 2] cycloaddition of münchnones onto fullerenes and olefins. These two different approaches proved to be efficient and complementary in the synthesis of optically active pyrrolino[3,4:1,2][60]fullerenes with high levels of enantiomeric excess and moderate to good conversions. Further functionalization of the pyrrolinofullerene carboxylic acid derivatives has been carried out by esterification and amidation reactions.


Assuntos
Fulerenos/química , Metais/química , Compostos Orgânicos/química , Oxazóis/química , Catálise , Reação de Cicloadição , Ligantes , Maleimidas/química , Oxazolona/química , Estereoisomerismo , Especificidade por Substrato
13.
J Am Chem Soc ; 136(2): 705-12, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24359021

RESUMO

A wide range of new dipoles and catalysts have been used in 1,3-dipolar cycloadditions of N-metalated azomethine ylides onto C60 yielding a full stereodivergent synthesis of pyrrolidino[60]fullerenes with complete diastereoselectivities and very high enantioselectivities. The use of less-explored chiral α-iminoamides as starting 1,3-dipoles leads to an interesting double asymmetric induction resulting in a matching/mismatching effect depending upon the absolute configuration of the stereocenter in the starting α-iminoamide. An enantioselective process was also found in the retrocycloaddition reaction as revealed by mass spectrometry analysis on quasi-enantiomeric pyrrolidino[60]fullerenes. Theoretical DFT calculations are in very good agreement with the experimental data. On the basis of this agreement, a plausible reaction mechanism is proposed.

14.
Top Curr Chem ; 350: 1-64, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23539380

RESUMO

Buckyballs represent a new and fascinating molecular allotropic form of carbon that has received a lot of attention by the chemical community during the last two decades. The unabating interest on this singular family of highly strained carbon spheres has allowed the establishing of the fundamental chemical reactivity of these carbon cages and, therefore, a huge variety of fullerene derivatives involving [60] and [70]fullerenes, higher fullerenes, and endohedral fullerenes have been prepared. Much less is known, however, of the chemistry of the uncommon non-IPR fullerenes which currently represent a scientific curiosity and which could pave the way to a range of new fullerenes. In this review on buckyballs we have mainly focused on the most recent and novel covalent chemistry of fullerenes involving metal catalysis and asymmetric synthesis, as well as on some of the most significant advances in supramolecular chemistry, namely H-bonded fullerene assemblies and the search for efficient concave receptors for the convex surface of fullerenes. Furthermore, we have also described the recent advances in the macromolecular chemistry of fullerenes, that is, those polymer molecules endowed with fullerenes which have been classified according to their chemical structures. This review is completed with the study of endohedral fullerenes, a new family of fullerenes in which the carbon cage of the fullerene contains a metal, molecule, or metal complex in the inner cavity. The presence of these species affords new fullerenes with completely different properties and chemical reactivity, thus opening a new avenue in which a more precise control of the photophysical and redox properties of fullerenes is possible. The use of fullerenes for organic electronics, namely in photovoltaic applications and molecular wires, complements the study and highlights the interest in these carbon allotropes for realistic practical applications. We have pointed out the so-called non-IPR fullerenes - those that do not follow the isolated pentagon rule - as the most intriguing class of fullerenes which, up to now, have only shown the tip of the huge iceberg behind the examples reported in the literature. The number of possible non-IPR carbon cages is almost infinite and the near future will show us whether they will become a reality.

15.
J Org Chem ; 79(11): 4871-7, 2014 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-24750127

RESUMO

Two C60 dumbbell molecules have been synthesized containing either cyclopropane or pyrrolidine rings connecting two fullerenes to a central fluorene core. A combination of spectroscopic techniques reveals that the cyclopropane dumbbell possesses better electronic communication between the fullerenes and the fluorene. This observation is underpinned by DFT transport calculations, which show that the cyclopropane dumbbell gives a higher calculated single-molecule conductance, a result of an energetically lower-lying LUMO level that extends deeper into the backbone. This strengthens the idea that cyclopropane behaves as a quasi-double bond.

16.
J Org Chem ; 79(8): 3473-86, 2014 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-24665860

RESUMO

New [60]fullerene-steroid conjugates (4-6) have been synthesized by 1,3-dipolar cycloaddition and Bingel-Hirsch cyclopropanation reactions from suitably functionalized epiandrosterone and [60]fullerene. Since a new stereocenter is created in the formation of the Prato monoaduct, two different diastereomers were isolated by HPLC (4, 5) whose absolute configurations were assigned according to the highly reliable "sector rule" on fullerenes. A further reaction of the malonate-containing diastereomer 5 with a second C60 molecule has afforded dumbbell fullerene 6 in which the two fullerene units are covalently connected through an epiandrosterone moiety. The new compounds have been spectroscopically characterized and their redox potentials, determined by cyclic voltametry, reveal three reversible reduction waves for hybrids 4 and 5, whereas these signals are split in dumbbell 6. Theoretical calculations at semiempirical (AM1) and single point B3LYP/6-31G(d) levels have predicted the most stable conformations for the hybrid compounds (4-6), showing the importance of the chlorine atom on the D ring of the steroid. Furthermore, TDDFT calculations have allowed assignments of the experimentally determined circular dichroism (CD) of the [60]fullerene-steroid hybrids based on the sign and position of the Cotton effects, despite the exceptionally large systems under study.


Assuntos
Fulerenos/química , Esteroides/química , Cromatografia Líquida de Alta Pressão , Dicroísmo Circular , Espectroscopia de Ressonância Magnética , Modelos Teóricos , Conformação Molecular , Estereoisomerismo
17.
Small ; 9(22): 3812-22, 2013 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-23630169

RESUMO

A combined experimental and theoretical investigation is carried out into the electrical transport across a fullerene dumbbell one-molecule junction. The newly designed molecule comprises two C60 s connected to a fluorene backbone via cyclopropyl groups. It is wired between gold electrodes under ambient conditions by pressing the tip of a scanning tunnelling microscope (STM) onto one of the C60 groups. The STM allows us to identify a single molecule before the junction is formed through imaging, which means unambiguously that only one molecule is wired. Once lifted, the same molecule could be wired many times as it was strongly fixed to the tip, and a high conductance state close to 10(-2) G0 is found. The results also suggest that the relative conductance fluctuations are low as a result of the low mobility of the molecule. Theoretical analysis indicates that the molecule is connected directly to one electrode through the central fluorene, and that to bind it to the gold fully it has to be pushed through a layer of adsorbates naturally present in the experiment.

18.
Chemphyschem ; 14(13): 2910-9, 2013 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-23918655

RESUMO

Rigid electron donor-acceptor conjugates (1-3) that combine π-extended benzodifurans as electron donors and C60 molecules as electron acceptors with different linkers have been synthesized and investigated with respect to intramolecular charge-transfer events. Electrochemistry, fluorescence, and transient absorption measurements revealed tunable and structure-dependent charge-transfer processes in the ground and excited states. Our experimental findings are underpinned by density-functional theory calculations.

19.
J Org Chem ; 78(7): 2819-26, 2013 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-23351060

RESUMO

The design and synthesis of fullerene-steroid hybrids by using Prato's protocol has afforded new fullerene derivatives endowed with epiandrosterone, an important naturally occurring steroid hormone. Since the formation of the pyrrolidine ring resulting from the 1,3-dipolar cyloaddition reaction takes place with generation of a new stereogenic center on the C2 of the five-membered ring, the reaction proceeds with formation of a diastereomeric mixture [compounds 6 and 7 in 70:30 ratio, 8 and 9 in 26:74 ratio (HPLC)] in which the formation of the major diasteroisomers 6 and 9 is consistent with an electrophilic attack of [60]fullerene on the Re face of the azomethine ylide directed by the steroidic unit. The chiroptical properties of these conjugates reveal typical Cotton effects in CD spectra that have been used to assign the absolute configuration of the new fulleropyrrolidines. The electrochemical study of the new compounds reveals the presence of four quasi-reversible reduction waves which are cathodically shifted in comparison with the parent C60, thus ascertaining the proposed structures.


Assuntos
Fulerenos/química , Esteroides/química , Ciclização , Modelos Moleculares , Estrutura Molecular , Teoria Quântica , Estereoisomerismo
20.
J Am Chem Soc ; 134(31): 12936-8, 2012 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-22834487

RESUMO

Stereodivergent syntheses of cis/trans pyrrolidino[3,4:1,2]fullerenes and endo/exo pyrrolidines are reported with high enantioselectivity levels. Fullerenes are revealed as a useful benchmark to develop suitable catalysts to control the stereochemical outcome and to shed light on the mechanism involved in the related 1,3-dipolar cycloaddition.


Assuntos
Compostos Azo/química , Fulerenos/química , Pirrolidinas/síntese química , Catálise , Cobre , Reação de Cicloadição , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa