Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Toxins (Basel) ; 13(1)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33466411

RESUMO

Botulinum neurotoxins (BoNT) are extremely potent and can induce respiratory failure, requiring long-term intensive care to prevent death. Recombinant monoclonal antibodies (mAbs) hold considerable promise as BoNT therapeutics and prophylactics. In contrast, equine antitoxin cannot be used prophylactically and has a short half-life. Two three-mAb combinations are in development that specifically neutralize BoNT serotype A (BoNT/A) and B (BoNT/B). The three-mAb combinations addressing a single serotype provided pre-exposure prophylaxis in the guinea pig inhalation model. A lyophilized co-formulation of six mAbs, designated G03-52-01, that addresses both A and B serotypes is in development. Here, we investigated the efficacy of G03-52-01 to protect guinea pigs against an aerosol exposure challenge of BoNT/A1 or BoNT/B1. Previously, it was found that each antibody demonstrated a dose-dependent exposure and reached maximum circulating concentrations within 48 h after intramuscular (IM) or intravenous (IV) injection. Here we show that G03-52-01, in a single IM injection of G03-52-01 administered 48 h pre-exposure, protected guinea pigs against an aerosol challenge of up to 238 LD50s of BoNT/A1 and 191 LD50s of BoNT/B1. These data suggest that a single IM administration of G03-52-01 provides pre-exposure prophylaxis against botulism from an aerosol exposure of BoNT/A1 or BoNT/B1.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Antitoxinas/uso terapêutico , Toxinas Botulínicas/imunologia , Botulismo/tratamento farmacológico , Botulismo/prevenção & controle , Animais , Anticorpos Neutralizantes/uso terapêutico , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Combinação de Medicamentos , Cobaias , Humanos , Imunoglobulina G/uso terapêutico , Dose Letal Mediana , Masculino , Sorogrupo
2.
PLoS One ; 12(5): e0177310, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28545100

RESUMO

The global health community is beginning to understand the burden of norovirus-associated disease, which has a significant impact in both developed and developing countries. Norovirus virus like particle (VLP)-based vaccines are currently under development and have been shown to elicit systemic and mucosal immune responses when delivered intranasally. In the present study, we describe the use of a dry powder formulation (GelVac™) with an in situ gelling polysaccharide (GelSite™) extracted from Aloe vera for nasal delivery of a bivalent vaccine formulation containing both GI and GII.4 norovirus VLPs. Dose-ranging studies were performed to identify the optimal antigen dosages based on systemic and mucosal immune responses in guinea pigs and determine any antigenic interference. A dose-dependent increase in systemic and mucosal immunogenicity against each of the VLPs were observed as well as a boosting effect for each VLP after the second dosing. A total antigen dose of ≥50 µg of each GI and GII.4 VLPs was determined to be the maximally immunogenic dose in guinea pigs. The immunogenicity results of this bivalent formulation, taken together with previous work on monovalent GelVac™ norovirus vaccine formulation, provides a basis for future development of this norovirus VLP vaccine.


Assuntos
Norovirus/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/química , Vacinas Virais/imunologia , Administração Intranasal , Aloe/química , Animais , Infecções por Caliciviridae/imunologia , Infecções por Caliciviridae/prevenção & controle , Relação Dose-Resposta a Droga , Feminino , Géis/química , Cobaias , Imunidade nas Mucosas , Testes de Neutralização , Norovirus/patogenicidade , Pós/química
3.
Vaccine ; 35(51): 7121-7126, 2017 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-29150208

RESUMO

Typhoid fever remains a serious public health problem with a high impact on toddlers and young children. Vaccines against the Vi capsular polysaccharide are efficacious against typhoid fever demonstrating that antibodies against Vi confer protection. The currently licensed Vi typhoid vaccines have however limited efficacy and are manufactured by a complex process from wild-type bacteria. Due to these inherent issues with the current vaccines, an alternative vaccine based on an O-acetylated high molecular weight (HMW) polygalacturonic acid (GelSite-OAc™) was generated. The HMW polygalacturonic acid shares the same backbone as the Vi polysaccharide of Salmonella Typhi. The GelSite-OAc™ has a high molecular weight (>1 × 106 Da) and a high degree of O-acetylation (DOAc) (>5 µmole/mg), both exceeding the potency specifications of the current Vi vaccine. Studies in Balb/c mice demonstrated that GelSite-OAc™ was highly immunogenic, inducing a strong antigen-specific antibody response in a DOAc- and dose-dependent manner which was comparable to or higher than those induced by the licensed Vi vaccine. Importantly, the GelSite-OAc™ was shown to be fully protective in mice against lethal challenge with Salmonella Typhi. Furthermore, the GelSite-OAc™ demonstrated a boosting effect or memory response, exhibiting a >2-fold increase in antibody levels upon the second immunization with either GelSite-OAc™ or the Vi vaccine. This novel boosting effect is unique among polysaccharide antigens and potentially makes GelSite-OAc™ effective in people under 2 years old. Together these results suggest that the GelSite-OAc™ could be a highly effective vaccine against Salmonella Typhi.


Assuntos
Pectinas/imunologia , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/imunologia , Febre Tifoide/prevenção & controle , Vacinas Tíficas-Paratíficas/química , Vacinas Tíficas-Paratíficas/imunologia , Vacinas Sintéticas/imunologia , Acetilação , Animais , Anticorpos Antibacterianos/sangue , Formação de Anticorpos/imunologia , Modelos Animais de Doenças , Imunização Secundária , Imunogenicidade da Vacina , Imunoglobulina G/sangue , Memória Imunológica , Camundongos , Pectinas/administração & dosagem , Pectinas/química , Polissacarídeos Bacterianos/administração & dosagem , Salmonella typhi/imunologia , Febre Tifoide/imunologia , Febre Tifoide/microbiologia , Vacinas Tíficas-Paratíficas/administração & dosagem , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/química
4.
Vaccine ; 34(12): 1452-8, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26873053

RESUMO

Norovirus is the primary cause of viral gastroenteritis in humans with multiple genotypes currently circulating worldwide. The development of a successful norovirus vaccine is contingent on its ability to induce both systemic and mucosal antibody responses against a wide range of norovirus genotypes. Norovirus virus-like particles (VLPs) are known to elicit systemic and mucosal immune responses when delivered intranasally. Incorporation of these VLPs into an intranasal powder vaccine offers the advantage of simplicity and induction of neutralizing systemic and mucosal antibodies. Nasal immunization, which provides the advantage of ease of administration and a mucosal delivery mechanism, faces the real issue of limited nasal residence time due to mucociliary clearance. Herein, we describe a novel dry powder (GelVac™) formulation of GI or GII.4 norovirus VLPs, two dominant circulating genotypes, to identify the optimal antigen dosages based on systemic and mucosal immune responses in guinea pigs. Systemic and mucosal immunogenicity of each of the VLPs was observed in a dose-dependent manner. In addition, a boosting effect was observed after the second dosing of each VLP antigen. With the GelVac™ formulation, a total antigen dose of ≥ 15 µg was determined to be the maximally immunogenic dose for both GI and GII.4 norovirus VLPs based on evaluation for 56 days. Taken together, these results indicate that norovirus VLPs could be used as potential vaccine candidates without using an immunostimulatory adjuvant and provide a basis for the development of a GelVac™ bivalent GI/GII.4 norovirus VLP vaccine.


Assuntos
Imunidade nas Mucosas , Norovirus , Pós , Vacinação/métodos , Vacinas Virais/administração & dosagem , Vacinas Virais/química , Administração Intranasal , Animais , Anticorpos Antivirais/sangue , Relação Dose-Resposta Imunológica , Feminino , Cobaias , Imunoglobulina G/sangue , Testes de Neutralização , Distribuição Aleatória , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/química , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas Virais/imunologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa