Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Basic Res Cardiol ; 116(1): 18, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33728868

RESUMO

Cardiac excitation-contraction coupling and metabolic and signaling activities are centrally modulated by nitric oxide (NO), which is produced by one of three NO synthases (NOSs). Despite the significant role of NO in cardiac Ca2+ homeostasis regulation under different pathophysiological conditions, such as Duchenne muscular dystrophy (DMD), no precise method describes the production, source or effect of NO through two NO signaling pathways: soluble guanylate cyclase-protein kinase G (NO-sGC-PKG) and S-nitrosylation (SNO). Using a novel strategy involving isolated murine cardiomyocytes loaded with a copper-based dye highly specific for NO, we observed a single transient NO production signal after each electrical stimulation event. The NO transient signal started 67.5 ms after the beginning of Rhod-2 Ca2+ transient signal and lasted for approximately 430 ms. Specific NOS isoform blockers or NO scavengers significantly inhibited the NO transient, suggesting that wild-type (WT) cardiomyocytes produce nNOS-dependent NO transients. Conversely, NO transient in mdx cardiomyocyte, a mouse model of DMD, was dependent on inducible NOS (iNOS) and endothelial (eNOS). In a consecutive stimulation protocol, the nNOS-dependent NO transient in WT cardiomyocytes significantly reduced the next Ca2+ transient via NO-sGC-PKG. In mdx cardiomyocytes, this inhibitory effect was iNOS- and eNOS-dependent and occurred through the SNO pathway. Basal NO production was nNOS- and iNOS-dependent in WT cardiomyocytes and eNOS- and iNOS-dependent in mdx cardiomyocytes. These results showed cardiomyocyte produces NO isoform-dependent transients upon membrane depolarization at the millisecond time scale activating a specific signaling pathway to negatively modulate the subsequent Ca2+ transient.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Cardiomiopatias/enzimologia , Potenciais da Membrana , Contração Miocárdica , Miócitos Cardíacos/enzimologia , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico/metabolismo , Animais , Cardiomiopatias/etiologia , Cardiomiopatias/fisiopatologia , Modelos Animais de Doenças , Acoplamento Excitação-Contração , Preparação de Coração Isolado , Masculino , Camundongos Endogâmicos mdx , Distrofia Muscular de Duchenne/complicações , Óxido Nítrico Sintase Tipo I/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Fatores de Tempo
2.
Chemphyschem ; 22(11): 1079-1087, 2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-33792107

RESUMO

The ability of a series of bridged triarylamines, so-called N-heterotriangulenes, to form multilayer-type 2D-extended films via a solution-based processing method was examined using complementary microscopic techniques. We found that the long-range order, crystallinity, and layer thickness decisively depend on the nature of the substituents attached to the polycyclic backbone. Owing to their flat core unit, compounds exhibiting a carbonyl unit at the bridge position provide a superior building block as compared to thioketone-bridged derivatives. In addition, nature and length of the peripheral substituents affect the orientation of the aromatic core unit within highly crystalline films. Hence, our results stress the significance of a suitable molecular framework and provide deeper understanding of structure formation in 2D-confined surroundings for such compounds.

3.
Soft Matter ; 17(42): 9765-9771, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34647955

RESUMO

The molecular self-organization of α,ω-dihexylsexithiophene (α,ω-DH6T) monolayers prepared at the solvent-water interface is investigated by complementary microscopy techniques. Our study focuses on the influence of solvents and initial droplet volume on the resulting film morphology. Long-range extended domains in the monolayer regime are detected by visible light microscopy only for toluene. Small-area electron diffraction (SAED) proves the formation of single-crystalline monolayers with structural parameters identical to the organic bulk crystals. In comparison with conventional vacuum sublimated thin films a deviant molecular orientation, derived from near-edge-X-ray absorption fine structure (NEXAFS) in combination with a lower step height measured by atomic-force-microscopy (AFM), indicates a different behaviour of the flexible terminal hexyl chains during growth in a liquid surrounding. Furthermore, a structural degradation over time is observed which is caused by residual solvent molecules that are incorporated during the transfer procedure.

4.
Nano Lett ; 20(2): 1305-1314, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-31951418

RESUMO

X-ray tomography has become an indispensable tool for studying complex 3D interior structures with high spatial resolution. Three-dimensional imaging using soft X-rays offers powerful contrast mechanisms but has seen limited success with tomography due to the restrictions imposed by the much lower energy of the probe beam. The generalized geometry of laminography, characterized by a tilted axis of rotation, provides nm-scale 3D resolution for the investigation of extended (mm range) but thin (µm to nm) samples that are well suited to soft X-ray studies. This work reports on the implementation of soft X-ray laminography (SoXL) at the scanning transmission X-ray spectromicroscope of the PolLux beamline at the Swiss Light Source, Paul Scherrer Institut, which enables 3D imaging of extended specimens from 270 to 1500 eV. Soft X-ray imaging provides contrast mechanisms for both chemical sensitivity to molecular bonds and oxidation states and magnetic dichroism due to the much stronger attenuation of X-rays in this energy range. The presented examples of applications range from functionalized nanomaterials to biological photonic crystals and sophisticated nanoscaled magnetic domain patterns, thus illustrating the wide fields of research that can benefit from SoXL.


Assuntos
Meios de Contraste/química , Imageamento Tridimensional/métodos , Nanoestruturas/química , Tomografia por Raios X/métodos , Meios de Contraste/uso terapêutico , Humanos , Magnetismo , Microscopia Eletrônica de Varredura , Nanoestruturas/uso terapêutico , Fótons , Radiografia , Raios X
5.
BMC Anesthesiol ; 20(1): 10, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31914932

RESUMO

BACKGROUND: The potential mechanism of mepivacaine's myocardial depressant effect observed in papillary muscle has not yet been investigated at cellular level. Therefore, we evaluated mepivacaine's effects on Ca2+ transient in isolated adult mouse cardiomyocytes. METHODS: Single ventricular myocytes were enzymatically isolated from wild-type C57Bl/6 mice and loaded with 10 µM fluorescent Ca2+ indicator Fluo-4-AM to record intracellular Ca2+ transients upon electrical stimulation. The mepivacaine effects at half-maximal inhibitory concentration (IC50) was determined on calibrated cardiomyocytes' Ca2+ transients by non-parametric statistical analyses on biophysical parameters. Combination of mepivacaine with NCX blockers ORM-10103 or NiCl2 were used to test a possible mechanism to explain mepivacaine-induced Ca2+ transients' reduction. RESULTS: A significant inhibition at mepivacaine's IC50 (50 µM) on Ca2+ transients was measured in biophysical parameters such as peak (control: 528.6 ± 73.61 nM vs mepivacaine: 130.9 ± 15.63 nM; p < 0.05), peak area (control: 401.7 ± 63.09 nM*s vs mepivacaine: 72.14 ± 10.46 nM*s; p < 0.05), slope (control: 7699 ± 1110 nM/s vs mepivacaine: 1686 ± 226.6 nM/s; p < 0.05), time to peak (control: 107.9 ± 8.967 ms vs mepivacaine: 83.61 ± 7.650 ms; p < 0.05) and D50 (control: 457.1 ± 47.16 ms vs mepivacaine: 284.5 ± 22.71 ms; p < 0.05). Combination of mepivacaine with NCX blockers ORM-10103 or NiCl2 showed a significant increase in the baseline of [Ca2+] and arrhythmic activity upon electrical stimulation. CONCLUSION: At cellular level, mepivacaine blocks Na+ channels, enhancing the reverse mode activity of NCX, leading to a significant reduction of Ca2+ transients. These results suggest a new mechanism for the mepivacaine-reduction contractility effect.


Assuntos
Anestésicos Locais/farmacologia , Antiarrítmicos/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Mepivacaína/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Animais , Benzopiranos/farmacologia , Estimulação Elétrica , Ventrículos do Coração , Camundongos , Camundongos Endogâmicos C57BL , Níquel/farmacologia , Piridinas/farmacologia , Trocador de Sódio e Cálcio/antagonistas & inibidores
6.
Adv Exp Med Biol ; 1131: 771-797, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31646534

RESUMO

In this article, we present an overview of simulation strategies in the context of subcellular domains where calcium-dependent signaling plays an important role. The presentation follows the spatial and temporal scales involved and represented by each algorithm. As an exemplary cell type, we will mainly cite work done on striated muscle cells, i.e. skeletal and cardiac muscle. For these cells, a wealth of ultrastructural, biophysical and electrophysiological data is at hand. Moreover, these cells also express ubiquitous signaling pathways as they are found in many other cell types and thus, the generalization of the methods and results presented here is straightforward.The models considered comprise the basic calcium signaling machinery as found in most excitable cell types including Ca2+ ions, diffusible and stationary buffer systems, and calcium regulated calcium release channels. Simulation strategies can be differentiated in stochastic and deterministic algorithms. Historically, deterministic approaches based on the macroscopic reaction rate equations were the first models considered. As experimental methods elucidated highly localized Ca2+ signaling events occurring in femtoliter volumes, stochastic methods were increasingly considered. However, detailed simulations of single molecule trajectories are rarely performed as the computational cost implied is too large. On the mesoscopic level, Gillespie's algorithm is extensively used in the systems biology community and with increasing frequency also in models of microdomain calcium signaling. To increase computational speed, fast approximations were derived from Gillespie's exact algorithm, most notably the chemical Langevin equation and the τ-leap algorithm. Finally, in order to integrate deterministic and stochastic effects in multiscale simulations, hybrid algorithms are increasingly used. These include stochastic models of ion channels combined with deterministic descriptions of the calcium buffering and diffusion system on the one hand, and algorithms that switch between deterministic and stochastic simulation steps in a context-dependent manner on the other. The basic assumptions of the listed methods as well as implementation schemes are given in the text. We conclude with a perspective on possible future developments of the field.


Assuntos
Sinalização do Cálcio , Cálcio , Simulação por Computador , Algoritmos , Animais , Cálcio/metabolismo , Canais de Cálcio , Fenômenos Eletrofisiológicos , Humanos , Modelos Biológicos , Processos Estocásticos
7.
Langmuir ; 34(19): 5444-5453, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29695155

RESUMO

We investigated the dynamics of the initial growth of the first epitaxial layers of perylenetetracarboxylic dianhydride (PTCDA) on the Au(111) surface with high lateral resolution using the aberration-corrected spectro-microscope SMART. With this instrument, we could simultaneously study the different adsorption behaviors and layer growth on various surface areas consisting of either a distribution of flat (111) terraces, separated by single atomic steps ("ideal surface"), or on areas with a high density of step bunches and defects ("realistic surface"). The combined use of photoemission electron microscopy, low-energy electron microscopy, and µ-spot X-ray absorption provided a wealth of new information, showing that the growth of the archetype molecule PTCDA not only has similarities but also has significant differences when comparing Au(111) and Ag(111) substrate surfaces. For instance, under otherwise identical preparation conditions, we observed different growth mechanisms on different surface regions, depending on the density of step bunches. In addition, we studied the spatially resolved desorption behavior which also depends on the substrate morphology.

8.
J Exp Biol ; 221(Pt 12)2018 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-29712750

RESUMO

Following the discovery of flight motor-driven unidirectional gas exchange with rising PO2  in the blowfly, X-ray computed tomography (CT) was used to visualize the organization of the tracheal system in the anterior body with emphasis on the arrangement of the pathways for airflow. The fly's head is preferentially supplied by cephalic tracheae originating from the ventral orifice of the mesothoracic spiracle (Sp1). The respiratory airflow during flight is a by-product of cyclic deformations of the thoracic box by the flight muscles. The air sacs below the tergal integument (scutum and scutellum) facilitate the respiratory airflow: the shortening of the thorax turns the scutellum and the wings downward and the scutum upward with a volume increase in the scutal air sacs. The resulting negative pressure sucks air from Sp1 through special tracheae towards the scutal air sacs. The airflow is directed by two valves that open alternately: (1) the hinged filter flaps of the metathoracic spiracles (Sp2) are passively pushed open during the upstroke by the increased tracheal pressure, thereby enabling expiration; (2) a newly described tracheal valve-like septum behind the regular spiracular valve lids of Sp1 opens passively and air is sucked in through Sp1 during the downstroke and prevents expiration by closing during the upstroke. This stabilizes the unidirectional airflow. The tracheal volume of the head, thorax and abdomen and their mass were determined. Despite the different anatomy of birds and flies, the unidirectional airflow reveals a comparable efficiency of the temporal throughput in flies and hummingbirds.


Assuntos
Sacos Aéreos/fisiologia , Dípteros/fisiologia , Voo Animal/fisiologia , Movimentos do Ar , Sacos Aéreos/anatomia & histologia , Animais , Ventilação Pulmonar , Respiração , Tomografia Computadorizada por Raios X , Traqueia/anatomia & histologia , Traqueia/fisiologia
9.
Phys Chem Chem Phys ; 20(36): 23674-23683, 2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30191206

RESUMO

Here, brand new ternary hybrid solar cells comprising perovskite nanocrystals (NCs) with a complementary absorption profile of the organic host matrix are reported. In particular, NH2CH[double bond, length as m-dash]NH2PbI3 (FAPbI3) perovskite NCs are implemented in bulk heterojunction organic solar cells based on the pDPP5T-2 electron donating polymer and a [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) acceptor at various loading amounts and the fabricated hybrid photovoltaics are thoroughly studied by employing different optoelectrical characterization methods. Current-voltage measurements and photoinduced charge carrier extraction by linear increasing voltage (photo-CELIV) reveal improved charge generation and charge transport properties upon incorporation of perovskite NCs into the photo-active layer of the hybrid solar cell. The power conversion efficiency (PCE) of the hybrid solar cell comprising 5% perovskite NCs is 10% enhanced compared to the organic reference, mainly due to the enlarged light harvesting and increased short circuit current density (Jsc). However, results suggest that introducing a higher amount of perovskite content induces bimolecular and trap-assisted recombination in the ternary devices. We perform a comprehensive transient absorption study of the charge transfer/transport mechanisms by employing femto-second pump-probe transient absorption spectroscopy (fs-TAS). fs-TAS measurements demonstrate a slower charge carrier recombination rate due to the introduction of perovskite NCs into the photoactive layer. Results reveal that DPP injects electrons from the singlet excited state into the perovskite NCs, which causes the desired cascading charge carrier transfer. In ternary blends, a small amount of FAPbI3 NCs provides an additional pathway in favor of the charge-separated state via the NCs, which, despite accelerating the depopulation of DPP's singlet excited state slightly slows down the charge-separation process between DPP and PC61BM. Interestingly, the loss processes are slowed down; an effect that is more important and, hence, explains the improved solar cell efficiency.

10.
Nanotechnology ; 27(42): 425703, 2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27622904

RESUMO

The organic semiconductor silver-tetracyanoquinodimethane (Ag-TCNQ) exhibits electrical switching and memory characteristics. Employing a scanning tunnelling microscopy setup inside a transmission electron microscope, the switching behaviour of individual Ag-TCNQ nanowires (NWs) is investigated in detail. For a large number of NWs, the switching between a high (OFF) and a low (ON) resistance state was successfully stimulated by negative bias sweeps. Fitting the experimental I-V curves with a Schottky emission function makes the switching features prominent and thus enables a direct evaluation of the switching process. A memory cycle including writing, reading and erasing features is demonstrated at an individual NW. Moreover, electronic failure mechanisms due to Joule heating are discussed. These findings have a significant impact on our understanding of the switching behaviour of Ag-TCNQ.

11.
Nanotechnology ; 27(23): 235705, 2016 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-27146329

RESUMO

The combination of complementary measurement techniques has become a frequent approach to improve scientific knowledge. Pairing of the high lateral resolution scanning force microscopy (SFM) with the spectroscopic information accessible through scanning transmission soft x-ray microscopy (STXM) permits assessing physical and chemical material properties with high spatial resolution. We present progress from the NanoXAS instrument towards using an SFM probe as an x-ray detector for STXM measurements. Just by the variation of one parameter, the SFM probe can be utilised to detect either sample photo-emitted electrons or transmitted photons. This allows the use of a single probe to detect electrons, photons and physical forces of interest. We also show recent progress and demonstrate the current limitations of using a high aspect ratio coaxial SFM probe to detect photo-emitted electrons with very high lateral resolution. Novel probe designs are proposed to further progress in using an SFM probe as a STXM detector.

12.
Mol Ther ; 23(8): 1320-1330, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26005840

RESUMO

Restoring expression levels of the EF-hand calcium (Ca(2+)) sensor protein S100A1 has emerged as a key factor in reconstituting normal Ca(2+) handling in failing myocardium. Improved sarcoplasmic reticulum (SR) function with enhanced Ca(2+) resequestration appears critical for S100A1's cyclic adenosine monophosphate-independent inotropic effects but raises concerns about potential diastolic SR Ca(2+) leakage that might trigger fatal arrhythmias. This study shows for the first time a diminished interaction between S100A1 and ryanodine receptors (RyR2s) in experimental HF. Restoring this link in failing cardiomyocytes, engineered heart tissue and mouse hearts, respectively, by means of adenoviral and adeno-associated viral S100A1 cDNA delivery normalizes diastolic RyR2 function and protects against Ca(2+)- and ß-adrenergic receptor-triggered proarrhythmogenic SR Ca(2+) leakage in vitro and in vivo. S100A1 inhibits diastolic SR Ca(2+) leakage despite aberrant RyR2 phosphorylation via protein kinase A and calmodulin-dependent kinase II and stoichiometry with accessory modulators such as calmodulin, FKBP12.6 or sorcin. Our findings demonstrate that S100A1 is a regulator of diastolic RyR2 activity and beneficially modulates diastolic RyR2 dysfunction. S100A1 interaction with the RyR2 is sufficient to protect against basal and catecholamine-triggered arrhythmic SR Ca(2+) leak in HF, combining antiarrhythmic potency with chronic inotropic actions.


Assuntos
Insuficiência Cardíaca/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Proteínas S100/metabolismo , Animais , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Calmodulina/metabolismo , DNA Complementar/metabolismo , Eletrocardiografia , Técnicas de Transferência de Genes , Insuficiência Cardíaca/prevenção & controle , Masculino , Camundongos , Microscopia de Fluorescência , Miocárdio/metabolismo , Miócitos Cardíacos/citologia , Fosforilação , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo , Engenharia Tecidual/métodos
13.
J Chem Phys ; 145(23): 234307, 2016 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-28010107

RESUMO

High-resolution C 1s near-edge x-ray absorption fine structure (NEXAFS) spectra of naphthalene are investigated. By comparing the spectral signatures of condensed naphthalene molecules with those of naphthalene in the gas phase, we are able to unambiguously identify spectral features which are affected by the intermolecular interactions in the condensed phase. With the help of calculations using time-dependent density-functional theory and the second-order algebraic-diagrammatic construction scheme for the polarization propagator, resonances in the relevant energy range can be assigned to valence and Rydberg-like excitations. Thus, we obtain a more detailed identification of NEXAFS resonances beyond the present literature.

14.
Biophys J ; 108(3): 557-67, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25650923

RESUMO

In this study, we numerically analyzed the nonlinear Ca(2+)-dependent gating dynamics of a single, nonconducting inositol 1,4,5-trisphosphate receptor (IP3R) channel, using an exact and fully stochastic simulation algorithm that includes channel gating, Ca(2+) buffering, and Ca(2+) diffusion. The IP3R is a ubiquitous intracellular Ca(2+) release channel that plays an important role in the formation of complex spatiotemporal Ca(2+) signals such as waves and oscillations. Dynamic subfemtoliter Ca(2+) microdomains reveal low copy numbers of Ca(2+) ions, buffer molecules, and IP3Rs, and stochastic fluctuations arising from molecular interactions and diffusion do not average out. In contrast to models treating calcium dynamics deterministically, the stochastic approach accounts for this molecular noise. We varied Ca(2+) diffusion coefficients and buffer reaction rates to tune the autocorrelation properties of Ca(2+) noise and found a distinct relation between the autocorrelation time τac, the mean channel open and close times, and the resulting IP3R open probability PO. We observed an increased PO for shorter noise autocorrelation times, caused by increasing channel open times and decreasing close times. In a pure diffusion model the effects become apparent at elevated calcium concentrations, e.g., at [Ca(2+)] = 25 µM, τac = 0.082 ms, the IP3R open probability increased by ≈20% and mean open times increased by ≈4 ms, compared to a zero noise model. We identified the inactivating Ca(2+) binding site of IP3R subunits as the primarily noise-susceptible element of the De Young and Keizer model. Short Ca(2+) noise autocorrelation times decrease the probability of Ca(2+) association and consequently increase IPvR activity. These results suggest a functional role of local calcium noise properties on calcium-regulated target molecules such as the ubiquitous IP3R. This finding may stimulate novel experimental approaches analyzing the role of calcium noise properties on microdomain behavior.


Assuntos
Cálcio/metabolismo , Simulação por Computador , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Ativação do Canal Iônico , Microdomínios da Membrana/metabolismo , Soluções Tampão , Difusão , Modelos Biológicos , Subunidades Proteicas/metabolismo , Processos Estocásticos , Fatores de Tempo
15.
J Struct Biol ; 192(3): 366-375, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26431893

RESUMO

Ca(2+) regulates several important intracellular processes. We combined second harmonic generation (SHG) and two photon excited fluorescence microscopy (2PFM) to simultaneously record the SHG signal of the myosin filaments and localized elementary Ca(2+) release signals (LCSs). We found LCSs associated with Y-shaped structures of the myosin filament pattern (YMs), so called verniers, in intact mouse skeletal muscle fibers under hypertonic treatment. Ion channels crucial for the Ca(2+) regulation are located in the tubular system, a system that is important for Ca(2+) regulation and excitation-contraction coupling. We investigated the tubular system of intact, living mouse skeletal muscle fibers using 2PFM and the fluorescent Ca(2+) indicator Fluo-4 dissolved in the external solution or the membrane dye di-8-ANEPPS. We simultaneously measured the SHG signal from the myosin filaments of the skeletal muscle fibers. We found that at least a subset of the YMs observed in SHG images are closely juxtaposed with Y-shaped structures of the transverse tubules (YTs). The distances of corresponding YMs and YTs yield values between 1.3 µm and 4.1 µm including pixel uncertainty with a mean distance of 2.52±0.10 µm (S.E.M., n=41). Additionally, we observed that some of the linear-shaped areas in the tubular system are colocalized with linear-shaped areas in the SHG images.


Assuntos
Cálcio/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Miosinas/metabolismo , Animais , Canais de Cálcio/metabolismo , Processamento de Imagem Assistida por Computador , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência por Excitação Multifotônica , Transdução de Sinais
16.
Biochim Biophys Acta ; 1838(4): 1122-31, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24365119

RESUMO

The regulation of intracellular Ca(2+) triggers a multitude of vital processes in biological cells. Ca(2+) permeable ryanodine receptors (RyRs) are the biggest known ion channels and play a key role in the regulation of intracellular calcium concentrations, particularly in muscle cells. In this study, we construct a computational model of the pore region of the skeletal RyR and perform molecular dynamics (MD) simulations. The dynamics and distribution of Ca(2+) around the luminal pore entry of the RyR suggest that Ca(2+) ions are channeled to the pore entry due to the arrangement of (acidic) amino acids at the extramembrane surface of the protein. This efficient mechanism of Ca(2+) supply is thought to be part of the mechanism of Ca(2+) conductance of RyRs. Viral myocarditis is predominantly caused by coxsackie viruses that induce the expression of the protein 2B which is known to affect intracellular Ca(2+) homeostasis in infected cells. From our sequence comparison, it is hypothesized, that modulation of RyR could be due to replacement of its transmembrane domains (TMDs) by those domains of the viral channel forming protein 2B of coxsackie virus. This article is part of a Special Issue entitled: Viral Membrane Proteins - Channels for Cellular Networking.


Assuntos
Simulação de Dinâmica Molecular , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Proteínas Virais/química , Sequência de Aminoácidos , Cálcio/metabolismo , Modelos Moleculares , Dados de Sequência Molecular
17.
J Synchrotron Radiat ; 22(1): 113-8, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25537596

RESUMO

Zone-plate-based scanning transmission soft X-ray microspectroscopy (STXM) is a well established technique for high-contrast imaging of sufficiently transparent specimens (e.g. ultrathin biological tissues, polymer materials, archaeometric specimens or magnetic thin films) with spatial resolutions in the regime of 20 nm and high spectroscopic or chemical sensitivity. However, due to the relatively large depth of focus of zone plates, the resolution of STXM along the optical axis so far stays unambiguously behind for thicker X-ray transparent specimens. This challenge can be addressed by the implementation of a second zone plate in the detection pathway of the beam, resulting in a confocal arrangement. Within this paper a first proof-of-principle study for a confocal STXM (cSTXM) and an elaborate alignment procedure in transmission and fluorescence geometry are presented. Based on first confocal soft X-ray micrographs of well known specimens, the advantage and limitation of cSTXM as well as further development potentials for future applications are discussed.

18.
J Microsc ; 260(1): 62-72, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26016390

RESUMO

Using an optical system made from fused silica catalogue optical components, third-order nonlinear microscopy has been enabled on conventional Ti:sapphire laser-based multiphoton microscopy setups. The optical system is designed using two lens groups with straightforward adaptation to other microscope stands when one of the lens groups is exchanged. Within the theoretical design, the optical system collects and transmits light with wavelengths between the near ultraviolet and the near infrared from an object field of at least 1 mm in diameter within a resulting numerical aperture of up to 0.56. The numerical aperture can be controlled with a variable aperture stop between the two lens groups of the condenser. We demonstrate this new detection capability in third harmonic generation imaging experiments at the harmonic wavelength of ∼300 nm and in multimodal nonlinear optical imaging experiments using third-order sum frequency generation and coherent anti-Stokes Raman scattering microscopy so that the wavelengths of the detected signals range from ∼300 nm to ∼660 nm.

19.
Phys Chem Chem Phys ; 17(28): 18278-81, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26123655

RESUMO

We investigate the resistivity switching in individual Ag-TCNQ wires with on/off-ratios of up to 10(3). Raman and soft X-ray absorption microspectroscopy studies disclose reverse charge transfer. Quantifying of the fraction of neutral TCNQ within the switched material yields values up to 22.3%. These findings expedite the understanding of the switching process in Ag-TCNQ nanowires.

20.
Phys Chem Chem Phys ; 17(43): 29150-60, 2015 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-26462749

RESUMO

The growth of the first ten layers of organic thin films on a smooth metallic substrate has been investigated in real-time using the model system PTCDA on Ag(111). The complex behaviour is comprehensively studied by electron microscopy, spectroscopy and diffraction in a combined PEEM/LEEM instrument revealing several new phenomena and yielding a consistent picture of this layer growth. PTCDA grows above room temperature in a Stranski-Krastanov mode, forming three-dimensional islands on a stable bi-layer, in competition with metastable 3rd and 4th layers. Around room temperature this growth mode changes into a quasi layer-by-layer growth, while at temperatures below about 250 K a Vollmer-Weber-like behaviour is observed. By means of laterally resolved soft X-ray absorption spectroscopy the orientation of all adsorbed molecules is found to be homogeneously flat lying on the surface, even during the growth process. The films grow epitaxially, showing long-range order with rotational domains. For the monolayer these domains could be directly analysed, showing an average size of several micrometers extending over substrate steps.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa