Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Am J Physiol Gastrointest Liver Physiol ; 316(3): G412-G424, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30605011

RESUMO

Takeda G protein-coupled receptor 5 (TGR5) agonists induce systemic release of glucagon-like peptides (GLPs) from intestinal L cells, a potentially therapeutic action against metabolic diseases such as nonalcoholic steatohepatitis (NASH), nonalcoholic fatty liver disease (NAFLD), and Type 2 diabetes. Historically, TGR5 agonist use has been hindered by side effects, including inhibition of gallbladder emptying. Here, we characterize RDX8940, a novel, orally administered TGR5 agonist designed to have minimal systemic effects and investigate its activity in mice fed a Western diet, a model of NAFLD and mild insulin resistance. Agonist activity, binding selectivity, toxicity, solubility, and permeability of RDX8940 were characterized in standard in vitro models. RDX8940 pharmacokinetics and effects on GLP secretion, insulin sensitivity, and liver steatosis were assessed in C57BL/6 mice fed normal or Western diet chow and given single or repeated doses of RDX8940 or vehicle, with or without dipeptidyl peptidase-4 (DPP4) inhibitors. Gallbladder effects were assessed in CD-1 mice fed normal chow and given RDX8940 or a systemic TGR5 agonist or vehicle. Our results showed that RDX8940 is minimally systemic, potent, and selective, and induces incretin (GLP-1, GLP-2, and peptide YY) secretion. RDX8940-induced increases in plasma active GLP-1 (aGLP-1) levels were enhanced by repeated dosing and by coadministration of DPP4 inhibitors. RDX8940 increased hepatic exposure to aGLP-1 without requiring coadministration of a DPP4 inhibitor. In mice fed a Western diet, RDX8940 improved liver steatosis and insulin sensitivity. Unlike systemic TGR5 agonists, RDX8940 did not inhibit gallbladder emptying. These results indicate that RDX8940 may have therapeutic potential in patients with NAFLD/NASH. NEW & NOTEWORTHY Takeda G protein-coupled receptor 5 (TGR5) agonists have potential as a treatment for nonalcoholic steatohepatitis and nonalcoholic fatty liver disease (NAFLD) but have until now been associated with undesirable side effects associated with systemic TGR5 agonism, including blockade of gallbladder emptying. We demonstrate that RDX8940, a potent, selective, minimally systemic oral TGR5 agonist, improves liver steatosis and insulin sensitivity in a mouse model of NAFLD and does not inhibit gallbladder emptying in mice.


Assuntos
Dieta Ocidental/efeitos adversos , Hipoglicemiantes/farmacologia , Fígado/efeitos dos fármacos , Receptores Acoplados a Proteínas G/agonistas , Animais , Modelos Animais de Doenças , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Resistência à Insulina/fisiologia , Intestinos/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo
2.
Hepatology ; 49(2): 407-17, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19072834

RESUMO

UNLABELLED: Non-alcoholic fatty liver disease (NAFLD) is one of the most common forms of chronic liver disease, with a prevalence ranging from 10% to 30%. The use of thyroid hormone receptor (TR) agonists for the treatment of NAFLD has not been considered viable because thyroid hormones increase free fatty acid (FFA) flux from the periphery to the liver, induce hepatic lipogenesis, and therefore could potentially cause steatosis. MB07811 is an orally active HepDirect prodrug of MB07344, a liver-targeted TR-beta agonist. The purpose of these studies was to assess the effects of MB07811 on whole body and liver lipid metabolism of normal rodents and rodent models of hepatic steatosis. In the current studies, MB07811 markedly reduced hepatic steatosis as well as reduced plasma FFA and triglycerides. In contrast to MB07811, T(3) induced adipocyte lipolysis in vitro and in vivo and had a diminished ability to decrease hepatic steatosis. This suggests the influx of FFA from the periphery to the liver may partially counteract the antisteatotic activity of T(3). Clearance of liver lipids by MB07811 results from accelerated hepatic fatty acid oxidation, a known consequence of hepatic TR activation, as reflected by increased hepatic mitochondrial respiration rates, changes in hepatic gene expression, and increased plasma acyl-carnitine levels. Transaminase levels remained unchanged, or were reduced, and no evidence for liver fibrosis or other histological liver damage was observed after treatment with MB07811 for up to 10 weeks. Additionally, MB07811, unlike T(3), did not increase heart weight or decrease pituitary thyroid-stimulating hormone beta (TSHbeta) expression. CONCLUSION: MB07811 represents a novel class of liver-targeted TR agonists with beneficial low-density lipoprotein cholesterol-lowering properties that may provide additional therapeutic benefit to hyperlipidemic patients with concomitant NAFLD.


Assuntos
Fígado Gorduroso/tratamento farmacológico , Receptores dos Hormônios Tireóideos/agonistas , Acetatos/uso terapêutico , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Citocromo P-450 CYP3A/metabolismo , Epididimo , Ácidos Graxos não Esterificados/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução , Fenóis/uso terapêutico , Éteres Fenílicos/uso terapêutico , Fenilacetatos/uso terapêutico , Ratos , Ratos Sprague-Dawley
3.
J Med Chem ; 61(17): 7589-7613, 2018 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-30141927

RESUMO

Bile acid signaling and metabolism in the gastrointestinal tract have wide-ranging influences on systemic disease. G protein-coupled bile acid receptor 1 (GPBAR1, TGR5) is one of the major effectors in bile acid sensing, with demonstrated influence on metabolic, inflammatory, and proliferative processes. The pharmacologic utility of TGR5 agonists has been limited by systemic target-related effects such as excessive gallbladder filling and blockade of gallbladder emptying. Gut-restricted TGR5 agonists, however, have the potential to avoid these side effects and consequently be developed into drugs with acceptable safety profiles. We describe the discovery and optimization of a series of gut-restricted TGR5 agonists that elicit a potent response in mice, with minimal gallbladder-related effects. The series includes 12 (TGR5 EC50: human, 143 nM; mouse, 1.2 nM), a compound with minimal systemic availability that may have therapeutic value to patients with type 2 diabetes mellitus, nonalcoholic steatohepatitis, or inflammatory bowel disease.


Assuntos
Vesícula Biliar/efeitos dos fármacos , Fármacos Gastrointestinais/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Tiazolidinas/química , Animais , Cães , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Fármacos Gastrointestinais/efeitos adversos , Fármacos Gastrointestinais/química , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Células HEK293 , Humanos , Células Madin Darby de Rim Canino , Masculino , Camundongos Endogâmicos C57BL , Receptores Acoplados a Proteínas G/metabolismo , Relação Estrutura-Atividade
4.
Endocrinology ; 148(1): 363-73, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17023534

RESUMO

A number of conditions, including osteoporosis, frailty, and sexual dysfunction in both men and women have been improved using androgens. However, androgens are not widely used for these indications because of the side effects associated with these drugs. We describe an androgen receptor (AR) ligand that maintains expected anabolic activities with substantially diminished activity in the prostate. LGD2226 is a nonsteroidal, nonaromatizable, highly selective ligand for the AR, exhibiting virtually no affinity for the other intracellular receptors. We determined that AR bound to LGD2226 exhibits a unique pattern of protein-protein interactions compared with testosterone, fluoxymesterone (an orally available steroidal androgen), and other steroids, suggesting that LGD2226 alters the conformation of the ligand-binding domain. We demonstrated that LGD2226 is fully active in cell-based models of bone and muscle. LGD2226 exhibited anabolic activity on muscle and bone with reduced impact on prostate growth in rodent models. Biomechanical testing of bones from animals treated with LGD2226 showed strong enhancement of bone strength above sham levels. LGD2226 was also efficacious in a sex-behavior model in male rats measuring mounts, intromissions, ejaculations, and copulation efficiency. These results with an orally available, nonaromatizable androgen demonstrate the important role of the AR and androgens in mediating a number of beneficial effects in bone, muscle, and sexual function independent from the conversion of androgens into estrogenic ligands. Taken together, these results suggest that orally active, nonsteroidal selective androgen receptor modulators may be useful therapeutics for enhancing muscle, bone, and sexual function.


Assuntos
Aminoquinolinas/farmacologia , Copulação/efeitos dos fármacos , Vértebras Lombares/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Próstata/efeitos dos fármacos , Quinolonas/farmacologia , Administração Oral , Aminoquinolinas/síntese química , Aminoquinolinas/metabolismo , Animais , Antineoplásicos Hormonais/farmacologia , Fenômenos Biomecânicos , Linhagem Celular Tumoral , Fluoximesterona/farmacologia , Humanos , Vértebras Lombares/fisiologia , Masculino , Orquiectomia , Osteossarcoma , Neoplasias da Próstata , Quinolonas/síntese química , Quinolonas/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Androgênicos/metabolismo , Spodoptera
5.
ACS Med Chem Lett ; 1(9): 478-82, 2010 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-24900234

RESUMO

AMP-activated protein kinase (AMPK) is a heterotrimeric kinase that regulates cellular energy metabolism by affecting energy-consuming pathways such as de novo lipid biosynthesis and glucose production as well as energy-producing pathways such as lipid oxidation and glucose uptake. Accordingly, compounds that activate AMPK represent potential drug candidates for the treatment of hyperlipidemia and type 2 diabetes. Screening of a proprietary library of AMP mimetics identified the phosphonic acid 2 that bears little structural resemblance to AMP but is capable of activating AMPK with high potency (EC50 = 6 nM vs AMP EC50 = 6 µM) and specificity. Phosphonate prodrugs of 2 inhibited de novo lipogenesis in cellular and animal models of hyperlipidemia.

6.
Proc Natl Acad Sci U S A ; 104(39): 15490-5, 2007 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-17878314

RESUMO

Despite efforts spanning four decades, the therapeutic potential of thyroid hormone receptor (TR) agonists as lipid-lowering and anti-obesity agents remains largely unexplored in humans because of dose-limiting cardiac effects and effects on the thyroid hormone axis (THA), muscle metabolism, and bone turnover. TR agonists selective for the TRbeta isoform exhibit modest cardiac sparing in rodents and primates but are unable to lower lipids without inducing TRbeta-mediated suppression of the THA. Herein, we describe a cytochrome P450-activated prodrug of a phosphonate-containing TR agonist that exhibits increased TR activation in the liver relative to extrahepatic tissues and an improved therapeutic index. Pharmacokinetic studies in rats demonstrated that the prodrug (2R,4S)-4-(3-chlorophenyl)-2-[(3,5-dimethyl-4-(4'-hydroxy-3'-isopropylbenzyl)phenoxy)methyl]-2-oxido-[1,3,2]-dioxaphosphonane (MB07811) undergoes first-pass hepatic extraction and that cleavage of the prodrug generates the negatively charged TR agonist (3,5-dimethyl-4-(4'-hydroxy-3'-isopropylbenzyl)phenoxy)methylphosphonic acid (MB07344), which distributes poorly into most tissues and is rapidly eliminated in the bile. Enhanced liver targeting was further demonstrated by comparing the effects of MB07811 with 3,5,3'-triiodo-l-thyronine (T(3)) and a non-liver-targeted TR agonist, 3,5-dichloro-4-(4-hydroxy-3-isopropylphenoxy)phenylacetic acid (KB-141) on the expression of TR agonist-responsive genes in the liver and six extrahepatic tissues. The pharmacologic effects of liver targeting were evident in the normal rat, where MB07811 exhibited increased cardiac sparing, and in the diet-induced obese mouse, where, unlike KB-141, MB07811 reduced cholesterol and both serum and hepatic triglycerides at doses devoid of effects on body weight, glycemia, and the THA. These results indicate that targeting TR agonists to the liver has the potential to lower both cholesterol and triglyceride levels with an acceptable safety profile.


Assuntos
Química Farmacêutica/métodos , Colesterol/metabolismo , Fígado/metabolismo , Receptores beta dos Hormônios Tireóideos/agonistas , Triglicerídeos/metabolismo , Animais , Relação Dose-Resposta a Droga , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Músculos/metabolismo , Ratos , Ratos Sprague-Dawley
7.
Horm Behav ; 47(2): 123-38, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15664016

RESUMO

This research identified the rat counterpart of the lateral cell group of the sexually dimorphic area (SDA) found in medial preoptic area (MPOA) gerbil of gerbils. The lateral SDA (lSDA) is critical for mating in male gerbils and contains most of the SDA cells projecting to the retrorubral field (RRF), a projection that is also important for mating. Therefore, to locate the counterpart of the lateral SDA, we traced the inputs to the rat RRF, which were dense in the ventral part of the bed nucleus of the stria terminalis (BST). To determine if the ventral BST or its projection to the RRF affects mating in male rats, we disrupted them bilaterally by placing cell-body lesions bilaterally in the ventral BST or unilaterally there and in the contralateral RRF. We also studied the effects of RRF lesions in both rats and gerbils. Bilateral ventral BST lesions, which left the medial preoptic nucleus intact, produced persistent and severe mating deficits. Disconnecting the ventral BST from the RRF also had long-lasting, but less severe, consequences. RRF lesions produced only temporary mating deficits in rats, but virtually eliminated mating in gerbils. The recovery of mating in rats after RRF, but not ventral BST, lesions, and the intermediate effects of disconnecting these areas from each other suggest that the ventral BST may contain mating-related projection neurons other than those projecting to the RRF or that its RRF-projecting cells send collaterals to another site. In either case, the pedunculopontine tegmental nucleus or raphe nuclei may be involved.


Assuntos
Núcleos Septais/citologia , Núcleos Septais/fisiologia , Comportamento Sexual Animal/fisiologia , Tegmento Mesencefálico/citologia , Tegmento Mesencefálico/fisiologia , Animais , Denervação , Feminino , Gerbillinae , Masculino , Vias Neurais , Área Pré-Óptica/citologia , Área Pré-Óptica/fisiologia , Ratos , Ratos Long-Evans , Ratos Sprague-Dawley , Caracteres Sexuais , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa