Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Reprod Domest Anim ; 49(3): 409-19, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24716618

RESUMO

This study describes the reproductive parameters of Morada Nova rams, a breed of hair sheep from Brazil and with unique adaption to tropical environments. At 42 weeks of age, 15 rams were subjected to semen collection and, 1 week later, animals were slaughtered for collection of testes, epididymis and accessory sex glands. We conducted 2-D electrophoresis of seminal plasma proteins and major spots of stained gels were identified by LC-MS/MS. Total RNA was isolated from testis, epididymis and vesicular glands and subjected to qPCR. At slaughter, scrotal circumference and testicular weight were 27.5 ± 0.5 cm and 109.5 ± 6.0 g, respectively. Seminiferous tubule (ST) diameter was 188.3 ± 4.0 µm and each testis contained 1.9 ± 0.1 Sertoli cells (×10(9) ). Each Sertoli cell supported 0.1 ± 0.01 A spermatogonia, 3.0 ± 0.2 pachytene spermatocytes and 7.7 ± 0.5 round spermatids/tubule cross section. Daily sperm production reached 5.6 × 10(6)  cells/g of testis parenchyma. Testis size appeared as indicative of ST diameter and associated with epididymal measurements, as well as with the population of round spermatids and Sertoli cells/testis. Rams with heavier testes had greater daily sperm production and more Sertoli cells/testis. We detected 90.9 ± 9.6 spots per 2-D gel of seminal plasma. Major seminal proteins were identified as ram seminal vesicle proteins at 14 and 22 kDa, representing 16.2% and 12.8% of the total intensity of valid spots in the gels, respectively. Expression of both genes was greater in the vesicular glands as compared to testis and epididymis. Pixel intensity for those proteins in the 2-D gels was significantly correlated with seminal vesicle weight. This is the first description of the basic reproductive aspects of Morada Nova rams, including protein profiles of their seminal plasma. These findings will allow a better understanding of their reproductive physiology.


Assuntos
Reprodução , Proteínas de Plasma Seminal/análise , Ovinos , Espermatogênese , Testículo/anatomia & histologia , Clima Tropical , Adaptação Fisiológica/genética , Animais , Brasil , Cruzamento , Epididimo/anatomia & histologia , Expressão Gênica , Masculino , Tamanho do Órgão , Escroto/anatomia & histologia , Análise do Sêmen/veterinária , Proteínas de Plasma Seminal/genética , Contagem de Espermatozoides/veterinária
2.
J Proteomics ; 223: 103814, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32389842

RESUMO

Schizophrenia is a psychiatric disorder that affects 21 million people worldwide. Despite several studies having been shown that some brain regions may play a critical role in the pathophysiology of schizophrenia, the molecular basis to explain this diversity is still lacking. The cerebellum (CER), caudate nucleus (CAU), and posterior cingulate cortex (PCC) are areas associated with negative and cognitive symptoms in schizophrenia. In this study, we performed shotgun proteomics of the aforementioned brain regions, collected postmortem from patients with schizophrenia and compared with the mentally healthy group. In addition, we performed a proteomic analysis of nuclear and mitochondrial fractions of these same regions. Our results presented 106, 727 and 135 differentially regulated proteins in the CAU, PCC, and CER, respectively. Pathway enrichment analysis revealed dysfunctions associated with synaptic processes in the CAU, transport in the CER, and in energy metabolism in the PCC. In all brain areas, we found that proteins related to oligodendrocytes and the metabolic processes were dysregulated in schizophrenia. SIGNIFICANCE: Schizophrenia is a complex and heterogeneous psychiatric disorder. Despite much research having been done to increase the knowledge about the role of each region in the pathophysiology of this disorder, the molecular mechanisms underlying it are still lacking. We performed shotgun proteomics in the postmortem cerebellum (CER), caudate nucleus (CAU) and posterior cingulate cortex (PCC) from patients with schizophrenia and compared with healthy controls. Our findings suggest that each aforementioned region presents dysregulations in specific molecular pathways, such as energy metabolism in the PCC, transport in the CER, and synaptic process in the CAU. Additionally, these areas presented dysfunctions in oligodendrocytes and metabolic processes. Our results may highlight future directions for the development of novel clinical approaches for specific therapeutic targets.


Assuntos
Esquizofrenia , Encéfalo/metabolismo , Metabolismo Energético , Humanos , Proteoma/metabolismo , Proteômica
3.
Sci Rep ; 10(1): 12403, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32709949

RESUMO

In mouse pregnancy, pubic symphysis (PS) remodels into an elastic interpubic ligament (IpL) in a temporally regulated process to provide safe delivery. It restores at postpartum to assure reproductive tract homeostasis. Recently, macrophage localization in the IpL and dynamic changes in the expression of inflammatory mediators observed from the end of pregnancy (D18, D19) to early days postpartum (1dpp, 3dpp) highlighted the necessity of the identification of the key molecules involved in innate immune processes in PS remodeling. Therefore, this study uses morphological and high-sensitivity molecular techniques to identify both macrophage association with extracellular matrix (ECM) remodeling and the immunological processes involved in PS changes from D18 to 3dpp. Results showed macrophage association with active gelatinases and ECM components and 25 differentially expressed genes (DEGs) related to macrophage activities in interpubic tissues from D18 to 3dpp. Additionally, microarray and proteomic analysis showed a significant association of interpubic tissue DEGs with complement system activation and differentially expressed proteins (DEPs) with phagocytosis, highlighting the involvement of macrophage-related activities in mouse PS remodeling. Therefore, the findings suggest that PS ECM remodeling is associated with evidence of macrophage modulation that ensures both IpL relaxation and fast PS recovery postpartum for first labor.


Assuntos
Remodelação Óssea/imunologia , Macrófagos/citologia , Período Pós-Parto/fisiologia , Sínfise Pubiana/fisiologia , Animais , Matriz Extracelular/metabolismo , Feminino , Imunidade Inata , Camundongos , Período Pós-Parto/imunologia , Gravidez , Sínfise Pubiana/citologia
4.
Peptides ; 80: p. 18-24, 2016.
Artigo | SES-SP, SES SP - Instituto Butantan, SES-SP | ID: but-ib13701

RESUMO

The scorpion Tityus serrulatus venom comprises a complex mixture of molecules that paralyzes and kills preys, especially insects. However, venom components also interact with molecules in humans, causing clinic envenomation. This cross-interaction may result from homologous molecular targets in mammalians and insects, such as (NEP)-like enzymes. In face of these similarities, we searched for peptides in Tityus serrulatus venom using human NEP as a screening tool. We found a NEP-inhibiting peptide with the primary sequence YLPT, which is very similar to that of the insect neuropeptide proctolin (RYLPT). Thus, we named the new peptide [des-Arg(1)]-proctolin. Comparative NEP activity assays using natural substrates demonstrated that [des-Arg(1)]-proctolin has high specificity for NEP and better inhibitory activity than proctolin. To test the initial hypothesis that molecular homologies allow Tityus serrulatus venom to act on both mammal and insect targets, we investigated the presence of a NEP-like in cockroaches, the main scorpion prey, that could be likewise inhibited by [des-Arg(1)]-proctolin. Indeed, we detected a possible NEP-like in a homogenate of cockroach heads whose activity was blocked by thiorphan and also by [des-Arg(1)]-proctolin. Western blot analysis using a human NEP monoclonal antibody suggested a NEP-like enzyme in the homogenate of cockroach heads. Our study describes for the first time a proctolin-like peptide, named [des-Arg(1)]-proctolin, isolated from Tityus serrulatus venom. The tetrapeptide inhibits human NEP activity and a NEP-like activity in a cockroach head homogenate, thus it may play a role in human envenomation as well as in the paralysis and death of scorpion preys. (C) 2015 Elsevier Inc. All rights reserved.


Assuntos
Toxicologia , Bioquímica , Biologia Molecular
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa