Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Nat Chem Biol ; 17(10): 1084-1092, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34294896

RESUMO

HUWE1 is a universal quality-control E3 ligase that marks diverse client proteins for proteasomal degradation. Although the giant HECT enzyme is an essential component of the ubiquitin-proteasome system closely linked with severe human diseases, its molecular mechanism is little understood. Here, we present the crystal structure of Nematocida HUWE1, revealing how a single E3 enzyme has specificity for a multitude of unrelated substrates. The protein adopts a remarkable snake-like structure, where the C-terminal HECT domain heads an extended alpha-solenoid body that coils in on itself and houses various protein-protein interaction modules. Our integrative structural analysis shows that this ring structure is highly dynamic, enabling the flexible HECT domain to reach protein targets presented by the various acceptor sites. Together, our data demonstrate how HUWE1 is regulated by its unique structure, adapting a promiscuous E3 ligase to selectively target unassembled orphan proteins.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Microsporídios/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas Fúngicas , Insetos , Microsporídios/genética , Modelos Moleculares , Conformação Proteica , Domínios Proteicos , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética
2.
EMBO J ; 37(3): 367-383, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29330193

RESUMO

Myostatin, a key regulator of muscle mass in vertebrates, is biosynthesised as a latent precursor in muscle and is activated by sequential proteolysis of the pro-domain. To investigate the molecular mechanism by which pro-myostatin remains latent, we have determined the structure of unprocessed pro-myostatin and analysed the properties of the protein in its different forms. Crystal structures and SAXS analyses show that pro-myostatin adopts an open, V-shaped structure with a domain-swapped arrangement. The pro-mature complex, after cleavage of the furin site, has significantly reduced activity compared with the mature growth factor and persists as a stable complex that is resistant to the natural antagonist follistatin. The latency appears to be conferred by a number of distinct features that collectively stabilise the interaction of the pro-domains with the mature growth factor, enabling a regulated stepwise activation process, distinct from the prototypical pro-TGF-ß1. These results provide a basis for understanding the effect of missense mutations in pro-myostatin and pave the way for the design of novel myostatin inhibitors.


Assuntos
Músculo Esquelético/metabolismo , Miostatina/metabolismo , Precursores de Proteínas/metabolismo , Linhagem Celular , Cristalografia por Raios X , Ativação Enzimática/fisiologia , Folistatina/farmacologia , Células HEK293 , Humanos , Miostatina/antagonistas & inibidores , Polimorfismo Genético , Estrutura Secundária de Proteína , Proteólise , Fator de Crescimento Transformador beta/metabolismo
3.
Limnol Oceanogr ; 66(8): 3190-3208, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34588708

RESUMO

Coccolithophores are among the most important calcifying pelagic organisms. To assess how coccolithophore species with different coccolith-carbonate mass and distinct ecological resilience to ocean warming will influence the "rain ratio" and the "biological carbon pump", 1 yr of species-specific coccolith-carbonate export fluxes were quantified using sediment traps moored at four sites between NW Africa and the Caribbean (i.e., CB-20°N/21°W, at 1214 m; M1-12°N/23°W, at 1150 m; M2-14°N/37°W, at 1235 m; M4-12°N/49°W, at 1130 m). Highest coccolith-CaCO3 fluxes at the westernmost site M4, where the nutricline is deepest along the tropical North Atlantic, were dominated by deep-dwelling small-sized coccolith species Florisphaera profunda and Gladiolithus flabellatus. Total coccolith-CaCO3 fluxes of 371 mg m-2 yr-1 at M4 were followed by 165 mg m-2 yr-1 at the north-easternmost CB, 130 mg m-2 yr-1 at M1, and 114 mg m-2 yr-1 at M2 in between. Coccoliths accounted for nearly half of the total carbonate flux at M4 (45%), much higher compared to 23% at M2 and 15% at M1 and CB. At site M4, highest ratios of coccolith-CaCO3 to particulate organic carbon fluxes and weak correlations between the carbonate of deep-dwelling species and particulate organic carbon suggest that increasing productivity in the lower photic zone in response to ocean warming might enhance the rain ratio and reduce the coccolith-ballasting efficiency. The resulting weakened biological carbon pump could, however, be counterbalanced by increasing frequency of Saharan dust outbreaks across the tropical Atlantic, providing mineral ballast as well as nutrients to fuel fast-blooming and ballast-efficient coccolithophore species.

4.
Proc Natl Acad Sci U S A ; 115(31): E7293-E7302, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-30012610

RESUMO

The recruitment and evolutionary optimization of promiscuous enzymes is key to the rapid adaptation of organisms to changing environments. Our understanding of the precise mechanisms underlying enzyme repurposing is, however, limited: What are the active-site features that enable the molecular recognition of multiple substrates with contrasting catalytic requirements? To gain insights into the molecular determinants of adaptation in promiscuous enzymes, we performed the laboratory evolution of an arylsulfatase to improve its initially weak phenylphosphonate hydrolase activity. The evolutionary trajectory led to a 100,000-fold enhancement of phenylphosphonate hydrolysis, while the native sulfate and promiscuous phosphate mono- and diester hydrolyses were only marginally affected (≤50-fold). Structural, kinetic, and in silico characterizations of the evolutionary intermediates revealed that two key mutations, T50A and M72V, locally reshaped the active site, improving access to the catalytic machinery for the phosphonate. Measured transition state (TS) charge changes along the trajectory suggest the creation of a new Michaelis complex (E•S, enzyme-substrate), with enhanced leaving group stabilization in the TS for the promiscuous phosphonate (ßleavinggroup from -1.08 to -0.42). Rather than altering the catalytic machinery, evolutionary repurposing was achieved by fine-tuning the molecular recognition of the phosphonate in the Michaelis complex, and by extension, also in the TS. This molecular scenario constitutes a mechanistic alternative to adaptation solely based on enzyme flexibility and conformational selection. Instead, rapid functional transitions between distinct chemical reactions rely on the high reactivity of permissive active-site architectures that allow multiple substrate binding modes.


Assuntos
Arilsulfatases/química , Evolução Molecular Direcionada , Catálise , Domínio Catalítico , Hidrólise , Compostos Organofosforados/química , Conformação Proteica
5.
J Am Chem Soc ; 141(1): 370-387, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30497259

RESUMO

Highly proficient, promiscuous enzymes can be springboards for functional evolution, able to avoid loss of function during adaptation by their capacity to promote multiple reactions. We employ a systematic comparative study of structure, sequence, and substrate specificity to track the evolution of specificity and reactivity between promiscuous members of clades of the alkaline phosphatase (AP) superfamily. Construction of a phylogenetic tree of protein sequences maps out the likely transition zone between arylsulfatases (ASs) and phosphonate monoester hydrolases (PMHs). Kinetic analysis shows that all enzymes characterized have four chemically distinct phospho- and sulfoesterase activities, with rate accelerations ranging from 1011- to 1017-fold for their primary and 109- to 1012-fold for their promiscuous reactions, suggesting that catalytic promiscuity is widespread in the AP-superfamily. This functional characterization and crystallography reveal a novel class of ASs that is so similar in sequence to known PMHs that it had not been recognized as having diverged in function. Based on analysis of snapshots of catalytic promiscuity "in transition", we develop possible models that would allow functional evolution and determine scenarios for trade-off between multiple activities. For the new ASs, we observe largely invariant substrate specificity that would facilitate the transition from ASs to PMHs via trade-off-free molecular exaptation, that is, evolution without initial loss of primary activity and specificity toward the original substrate. This ability to bypass low activity generalists provides a molecular solution to avoid adaptive conflict.


Assuntos
Fosfatase Alcalina/metabolismo , Evolução Molecular , Fosfatase Alcalina/química , Bactérias/enzimologia , Domínio Catalítico , Cinética , Modelos Moleculares , Filogenia , Alinhamento de Sequência , Especificidade por Substrato
6.
Chemistry ; 25(52): 12037-12041, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31231840

RESUMO

Natural products have proven to be a rich source of molecular architectures for drugs. Here, an integrated approach to natural product screening is proposed, which uncovered eight new natural product scaffolds for KRAS-the most frequently mutated oncogenic driver in human cancers, which has remained thus far undrugged. The approach combines aspects of virtual screening, fragment-based screening, structure-activity relationships (SAR) by NMR, and structure-based drug discovery to overcome the limitations in traditional natural product approaches. By using our approach, a new "snugness of fit" scoring function and the first crystal-soaking system of the active form of KRASG12D , the protein-ligand X-ray structures of a tricyclic indolopyrrole fungal alkaloid and an indoloisoquinolinone have been successfully elucidated. The natural product KRAS hits discovered provide fruitful ground for the optimization of highly potent natural-product-based inhibitors of the active form of oncogenic RAS. This integrated approach for screening natural products also holds promise for other "undruggable" targets.

7.
Proc Natl Acad Sci U S A ; 113(27): 7503-8, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27325754

RESUMO

Enzymes in essential metabolic pathways are attractive targets for the treatment of bacterial diseases, but in many cases, the presence of homologous human enzymes makes them impractical candidates for drug development. Fumarate hydratase, an essential enzyme in the tricarboxylic acid (TCA) cycle, has been identified as one such potential therapeutic target in tuberculosis. We report the discovery of the first small molecule inhibitor, to our knowledge, of the Mycobacterium tuberculosis fumarate hydratase. A crystal structure at 2.0-Å resolution of the compound in complex with the protein establishes the existence of a previously unidentified allosteric regulatory site. This allosteric site allows for selective inhibition with respect to the homologous human enzyme. We observe a unique binding mode in which two inhibitor molecules interact within the allosteric site, driving significant conformational changes that preclude simultaneous substrate and inhibitor binding. Our results demonstrate the selective inhibition of a highly conserved metabolic enzyme that contains identical active site residues in both the host and the pathogen.


Assuntos
Fumarato Hidratase/metabolismo , Mycobacterium tuberculosis/enzimologia , Regulação Alostérica , Cristalografia por Raios X , Fluorescência , Fumarato Hidratase/antagonistas & inibidores
8.
J Biol Chem ; 292(30): 12516-12527, 2017 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-28584056

RESUMO

Bone morphogenetic proteins (BMPs) are secreted growth factors that promote differentiation processes in embryogenesis and tissue development. Regulation of BMP signaling involves binding to a variety of extracellular proteins, among which are many von Willebrand factor C (vWC) domain-containing proteins. Although the crystal structure of the complex of crossveinless-2 (CV-2) vWC1 and BMP-2 previously revealed one mode of the vWC/BMP-binding mechanism, other vWC domains may bind to BMP differently. Here, using X-ray crystallography, we present for the first time structures of the vWC domains of two proteins thought to interact with BMP-2: collagen IIA and matricellular protein CCN3. We found that these two vWC domains share a similar N-terminal fold that differs greatly from that in CV-2 vWC, which comprises its BMP-2-binding site. We analyzed the ability of these vWC domains to directly bind to BMP-2 and detected an interaction only between the collagen IIa vWC and BMP-2. Guided by the collagen IIa vWC domain crystal structure and conservation of surface residues among orthologous domains, we mapped the BMP-binding epitope on the subdomain 1 of the vWC domain. This binding site is different from that previously observed in the complex between CV-2 vWC and BMP-2, revealing an alternative mode of interaction between vWC domains and BMPs.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Colágeno/química , Colágeno/metabolismo , Proteína Sobre-Expressa em Nefroblastoma/química , Proteína Sobre-Expressa em Nefroblastoma/metabolismo , Fator de von Willebrand/química , Sítios de Ligação , Proteína Morfogenética Óssea 2/química , Células Cultivadas , Humanos , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Fator de von Willebrand/metabolismo
9.
J Am Chem Soc ; 139(6): 2245-2256, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28084734

RESUMO

We report a double-click macrocyclization approach for the design of constrained peptide inhibitors having non-helical or extended conformations. Our targets are the tankyrase proteins (TNKS), poly(ADP-ribose) polymerases (PARP) that regulate Wnt signaling by targeting Axin for degradation. TNKS are deregulated in many different cancer types, and inhibition of TNKS therefore represents an attractive therapeutic strategy. However, clinical development of TNKS-specific PARP catalytic inhibitors is challenging due to off-target effects and cellular toxicity. We instead targeted the substrate-recognition domain of TNKS, as it is unique among PARP family members. We employed a two-component strategy, allowing peptide and linker to be separately engineered and then assembled in a combinatorial fashion via click chemistry. Using the consensus substrate-peptide sequence as a starting point, we optimized the length and rigidity of the linker and its position along the peptide. Optimization was further guided by high-resolution crystal structures of two of the macrocyclized peptides in complex with TNKS. This approach led to macrocyclized peptides with submicromolar affinities for TNKS and high proteolytic stability that are able to disrupt the interaction between TNKS and Axin substrate and to inhibit Wnt signaling in a dose-dependent manner. The peptides therefore represent a promising starting point for a new class of substrate-competitive inhibitors of TNKS with potential for suppressing Wnt signaling in cancer. Moreover, by demonstrating the application of the double-click macrocyclization approach to non-helical, extended, or irregularly structured peptides, we greatly extend its potential and scope, especially given the frequency with which such motifs mediate protein-protein interactions.


Assuntos
Inibidores Enzimáticos/farmacologia , Compostos Macrocíclicos/farmacologia , Peptídeos/farmacologia , Tanquirases/antagonistas & inibidores , Química Click , Cristalografia por Raios X , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Compostos Macrocíclicos/síntese química , Compostos Macrocíclicos/química , Simulação de Dinâmica Molecular , Estrutura Molecular , Peptídeos/síntese química , Peptídeos/química , Tanquirases/isolamento & purificação , Tanquirases/metabolismo , Termodinâmica
10.
J Biol Chem ; 286(36): 31915-23, 2011 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-21733844

RESUMO

Human aquaporin10 (hAQP10) is a transmembrane facilitator of both water and glycerol transport in the small intestine. This aquaglyceroporin is located in the apical membrane of enterocytes and is believed to contribute to the passage of water and glycerol through these intestinal absorptive cells. Here we overproduced hAQP10 in the yeast Pichia pastoris and observed that the protein is glycosylated at Asn-133 in the extracellular loop C. This finding confirms one of three predicted glycosylation sites for hAQP10, and its glycosylation is unique for the human aquaporins overproduced in this host. Nonglycosylated protein was isolated using both glycan affinity chromatography and through mutating asparagine 133 to a glutamine. All three forms of hAQP10 where found to facilitate the transport of water, glycerol, erythritol, and xylitol, and glycosylation had little effect on functionality. In contrast, glycosylated hAQP10 showed increased thermostability of 3-6 °C compared with the nonglycosylated protein, suggesting a stabilizing effect of the N-linked glycan. Because only one third of hAQP10 was glycosylated yet the thermostability titration was mono-modal, we suggest that the presence of at least one glycosylated protein within each tetramer is sufficient to convey an enhanced structural stability to the remaining hAQP10 protomers of the tetramer.


Assuntos
Aquaporinas/química , Aquaporinas/metabolismo , Sítios de Ligação , Transporte Biológico , Glicosilação , Temperatura Alta , Humanos , Pichia/genética , Estabilidade Proteica
11.
PLoS Biol ; 7(6): e1000130, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19529756

RESUMO

Aquaporins are transmembrane proteins that facilitate the flow of water through cellular membranes. An unusual characteristic of yeast aquaporins is that they frequently contain an extended N terminus of unknown function. Here we present the X-ray structure of the yeast aquaporin Aqy1 from Pichia pastoris at 1.15 A resolution. Our crystal structure reveals that the water channel is closed by the N terminus, which arranges as a tightly wound helical bundle, with Tyr31 forming H-bond interactions to a water molecule within the pore and thereby occluding the channel entrance. Nevertheless, functional assays show that Aqy1 has appreciable water transport activity that aids survival during rapid freezing of P. pastoris. These findings establish that Aqy1 is a gated water channel. Mutational studies in combination with molecular dynamics simulations imply that gating may be regulated by a combination of phosphorylation and mechanosensitivity.


Assuntos
Aquaporinas/química , Aquaporinas/metabolismo , Ativação do Canal Iônico , Pichia/química , Transporte Biológico , Simulação por Computador , Cristalografia por Raios X , Congelamento , Viabilidade Microbiana , Modelos Moleculares , Fosforilação , Estrutura Secundária de Proteína , Spinacia oleracea/química , Homologia Estrutural de Proteína , Tirosina/metabolismo , Água
12.
Oncol Res Treat ; 45(5): 248-253, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35220309

RESUMO

INTRODUCTION: Somatic evolution of the cancer genome resulting in genetically different subclones is thought to be involved in the development of treatment resistance but might also offer new therapeutic opportunities in metastatic breast cancer. No data are available if clonal evolution differs in patients treated with chemotherapy (chemo) or CDK4/6 inhibitors given with endocrine treatment (CE treatment). METHODS: We performed a prospective analysis of circulating tumor DNA (ctDNA) by targeted next-generation sequencing in 46 patients before the beginning of a systemic first-line (n = 37) or second-line (n = 9) treatment. Ct DNA was analyzed again upon disease progression. RESULTS: New mutations in ctDNA of patients with progressive disease were detected in 1/11 patients who started chemo, in 4/9 patients treated with chemo followed by CE maintenance treatment, and in 9/26 patients receiving CE therapy. The number of acquired new mutations did not differ significantly between the three therapy cohorts (all p values >0.05). However, in patients classified as secondary resistant (n = 37), occurrence of new mutations significantly differed between patients who started chemo (0/9) compared to patients treated with chemo followed by CE (4/11; p = 0.041) and patients receiving CE therapy (8/19; p = 0.024), respectively. CONCLUSION: Clonal evolution might differ significantly between metastatic breast cancer patients with hormone receptor positive and HER-2 negative disease treated with chemo or CDK4/6 inhibitors. These results should be confirmed in larger patient cohorts.


Assuntos
Neoplasias da Mama , DNA Tumoral Circulante , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , DNA Tumoral Circulante/genética , Evolução Clonal , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/uso terapêutico , Feminino , Humanos , Receptor ErbB-2/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
13.
ACS Nano ; 16(3): 3895-3905, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35258937

RESUMO

Tandem-repeat proteins comprise small secondary structure motifs that stack to form one-dimensional arrays with distinctive mechanical properties that are proposed to direct their cellular functions. Here, we use single-molecule optical tweezers to study the folding of consensus-designed tetratricopeptide repeats (CTPRs), superhelical arrays of short helix-turn-helix motifs. We find that CTPRs display a spring-like mechanical response in which individual repeats undergo rapid equilibrium fluctuations between partially folded and unfolded conformations. We rationalize the force response using Ising models and dissect the folding pathway of CTPRs under mechanical load, revealing how the repeat arrays form from the center toward both termini simultaneously. Most strikingly, we also directly observe the protein's superhelical tertiary structure in the force signal. Using protein engineering, crystallography, and single-molecule experiments, we show that the superhelical geometry can be altered by carefully placed amino acid substitutions, and we examine how these sequence changes affect intrinsic repeat stability and inter-repeat coupling. Our findings provide the means to dissect and modulate repeat-protein stability and dynamics, which will be essential for researchers to understand the function of natural repeat proteins and to exploit artificial repeats proteins in nanotechnology and biomedical applications.


Assuntos
Dobramento de Proteína , Proteínas , Estabilidade Proteica , Estrutura Secundária de Proteína , Proteínas/química , Termodinâmica
14.
Oncol Res Treat ; 44(9): 443-449, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34350900

RESUMO

INTRODUCTION: Cyclin-dependent 4/6 kinase (CDK4/6) inhibitors given with endocrine therapy until disease progression are standard of care in the treatment of women with advanced HR-positive Her-2-negative breast cancer. No data are available if therapy can be safely de-escalated to endocrine monotherapy in patients with long-lasting disease control. METHODS: We performed a retrospective analysis on the clinical course of 22 patients at our center who received CDK4/6 inhibitors with aromatase inhibitors or fulvestrant. All patients had at least stable disease for >6 months and made a joint decision with their provider to electively discontinue CDK4/6 inhibitors. Best objective response (BOR) at treatment discontinuation, progression-free survival, and re-treatment characteristics were recorded. RESULTS: Of 138 patients who received CDK4/6 inhibitors as first- or second-line therapy at our center, 22 met the inclusion criteria. Median duration of CDK4/6 treatment was 18 months (range 6-45). BOR was complete response in 1, partial response in 8, and stable disease in 13 patients. After a median duration of endocrine monotherapy of 9.5 months (range 5-44 months), 6 of 22 patients had progressive disease (1 local relapse and 5 systemic progression). All patients with disease progression had at least stable disease to chemotherapy (N = 1) or re-treatment with CDK4/6 inhibitors (N = 4). CONCLUSION: Elective discontinuation of CDK4/6 inhibitors is feasible in patients with long-lasting disease stabilization. This strategy should be evaluated in prospective trials.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias da Mama/tratamento farmacológico , Quinase 4 Dependente de Ciclina/uso terapêutico , Quinase 6 Dependente de Ciclina , Feminino , Hormônios/uso terapêutico , Humanos , Recidiva Local de Neoplasia , Estudos Prospectivos , Inibidores de Proteínas Quinases/uso terapêutico , Receptor ErbB-2 , Estudos Retrospectivos
15.
Cell Chem Biol ; 28(6): 835-847.e5, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-33662256

RESUMO

BRCA2 controls RAD51 recombinase during homologous DNA recombination (HDR) through eight evolutionarily conserved BRC repeats, which individually engage RAD51 via the motif Phe-x-x-Ala. Using structure-guided molecular design, templated on a monomeric thermostable chimera between human RAD51 and archaeal RadA, we identify CAM833, a 529 Da orthosteric inhibitor of RAD51:BRC with a Kd of 366 nM. The quinoline of CAM833 occupies a hotspot, the Phe-binding pocket on RAD51 and the methyl of the substituted α-methylbenzyl group occupies the Ala-binding pocket. In cells, CAM833 diminishes formation of damage-induced RAD51 nuclear foci; inhibits RAD51 molecular clustering, suppressing extended RAD51 filament assembly; potentiates cytotoxicity by ionizing radiation, augmenting 4N cell-cycle arrest and apoptotic cell death and works with poly-ADP ribose polymerase (PARP)1 inhibitors to suppress growth in BRCA2-wildtype cells. Thus, chemical inhibition of the protein-protein interaction between BRCA2 and RAD51 disrupts HDR and potentiates DNA damage-induced cell death, with implications for cancer therapy.


Assuntos
Proteína BRCA2/antagonistas & inibidores , Rad51 Recombinase/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Proteína BRCA2/química , Proteína BRCA2/metabolismo , Morte Celular/efeitos dos fármacos , Cristalografia por Raios X , Dano ao DNA , Humanos , Modelos Moleculares , Conformação Molecular , Ligação Proteica/efeitos dos fármacos , Rad51 Recombinase/química , Rad51 Recombinase/metabolismo , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Células Tumorais Cultivadas
16.
Biophys J ; 99(1): 124-33, 2010 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-20655840

RESUMO

Numerous membrane-transport proteins are major drug targets, and therefore a key ingredient in pharmaceutical development is the availability of reliable, efficient tools for membrane transport characterization and inhibition. Here, we present the use of evanescent-wave sensing for screening of membrane-protein-mediated transport across lipid bilayer membranes. This method is based on a direct recording of the temporal variations in the refractive index that occur upon a transfer-dependent change in the solute concentration inside liposomes associated to a surface plasmon resonance (SPR) active sensor surface. The applicability of the method is demonstrated by a functional study of the aquaglyceroporin PfAQP from the malaria parasite Plasmodium falciparum. Assays of the temperature dependence of facilitated diffusion of sugar alcohols on a single set of PfAQP-reconstituted liposomes reveal that the activation energies for facilitated diffusion of xylitol and sorbitol are the same as that previously measured for glycerol transport in the aquaglyceroporin of Escherichia coli (5 kcal/mole). These findings indicate that the aquaglyceroporin selectivity filter does not discriminate sugar alcohols based on their length, and that the extra energy cost of dehydration of larger sugar alcohols, upon entering the pore, is compensated for by additional hydrogen-bond interactions within the aquaglyceroporin pore.


Assuntos
Membrana Celular/metabolismo , Proteínas de Membrana/metabolismo , Refratometria , Transporte Biológico , Difusão , Cinética , Bicamadas Lipídicas/metabolismo , Lipossomos/metabolismo , Modelos Moleculares , Porinas/química , Porinas/metabolismo , Conformação Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Ressonância de Plasmônio de Superfície
17.
Structure ; 16(7): 1003-9, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18611373

RESUMO

A major current deficit in structural biology is the lack of high-resolution structures of eukaryotic membrane proteins, many of which are key drug targets for the treatment of disease. Numerous eukaryotic membrane proteins require specific lipids for their stability and activity, and efforts to crystallize and solve the structures of membrane proteins that do not address the issue of lipids frequently end in failure rather than success. To help address this problem, we have developed a sparse matrix crystallization screen consisting of 48 lipidic-sponge phase conditions. Sponge phases form liquid lipid bilayer environments which are suitable for conventional hanging- and sitting-drop crystallization experiments. Using the sponge phase screen, we obtained crystals of several different membrane proteins from bacterial and eukaryotic sources. We also demonstrate how the screen may be manipulated by incorporating specific lipids such as cholesterol; this modification led to crystals being recovered from a bacterial photosynthetic core complex.


Assuntos
Cristalização/métodos , Bicamadas Lipídicas/química , Proteínas de Membrana/ultraestrutura , Proteínas de Bactérias/química , Detergentes/química , Proteínas de Membrana/química , Espalhamento a Baixo Ângulo , Difração de Raios X
18.
Future Med Chem ; 12(21): 1911-1923, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32779487

RESUMO

Activating mutations in the three human RAS genes, KRAS, NRAS and HRAS, are among the most common oncogenic drivers in human cancers. Covalent KRASG12C inhibitors, which bind to the switch II pocket in the 'off state' of KRAS, represent the first direct KRAS drugs that entered human clinical trials. However, the remaining 85% of non-KRASG12C-driven cancers remain undrugged as do NRAS and HRAS and no drugs targeting the 'on state' have been discovered so far. The switch I/II pocket is a second pocket for which the nanomolar inhibitor BI-2852 has been discovered. Here, we elucidate inhibitor binding modes in KRAS, NRAS and HRAS on and off and discuss future strategies to drug all RAS isoforms with this one pocket.


Assuntos
Inibidores Enzimáticos/farmacologia , Isoenzimas/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Proteínas ras/antagonistas & inibidores , Inibidores Enzimáticos/química , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Neoplasias/enzimologia , Proteínas ras/genética , Proteínas ras/metabolismo
19.
J Med Chem ; 62(23): 10586-10604, 2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31517489

RESUMO

With the growing worldwide prevalence of antibiotic-resistant strains of tuberculosis (TB), new targets are urgently required for the development of treatments with novel modes of action. Fumarate hydratase (fumarase), a vulnerable component of the citric acid cycle in Mycobacterium tuberculosis (Mtb), is a metabolic target that could satisfy this unmet demand. A key challenge in the targeting of Mtb fumarase is its similarity to the human homolog, which shares an identical active site. A potential solution to this selectivity problem was previously found in a high-throughput screening hit that binds in a nonconserved allosteric site. In this work, a structure-activity relationship study was carried out with the determination of further structural biology on the lead series, affording derivatives with sub-micromolar inhibition. Further, the screening of this series against Mtb in vitro identified compounds with potent minimum inhibitory concentrations.


Assuntos
Antituberculosos/química , Antituberculosos/farmacologia , Sistemas de Liberação de Medicamentos , Fumarato Hidratase/antagonistas & inibidores , Mycobacterium tuberculosis/efeitos dos fármacos , Sítios de Ligação , Fumarato Hidratase/metabolismo , Humanos , Modelos Moleculares , Estrutura Molecular , Mycobacterium tuberculosis/enzimologia , Conformação Proteica , Relação Estrutura-Atividade
20.
Sci Rep ; 7(1): 4016, 2017 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-28638135

RESUMO

Regulation of aquaporins is a key process of living organisms to counteract sudden osmotic changes. Aqy1, which is a water transporting aquaporin of the yeast Pichia pastoris, is suggested to be gated by chemo-mechanical stimuli as a protective regulatory-response against rapid freezing. Here, we tested the influence of temperature by determining the X-ray structure of Aqy1 at room temperature (RT) at 1.3 Å resolution, and by exploring the structural dynamics of Aqy1 during freezing through molecular dynamics simulations. At ambient temperature and in a lipid bilayer, Aqy1 adopts a closed conformation that is globally better described by the RT than by the low-temperature (LT) crystal structure. Locally, for the blocking-residue Tyr31 and the water molecules inside the pore, both LT and RT data sets are consistent with the positions observed in the simulations at room-temperature. Moreover, as the temperature was lowered, Tyr31 adopted a conformation that more effectively blocked the channel, and its motion was accompanied by a temperature-driven rearrangement of the water molecules inside the channel. We therefore speculate that temperature drives Aqy1 from a loosely- to a tightly-blocked state. This analysis provides high-resolution structural evidence of the influence of temperature on membrane-transport channels.


Assuntos
Aquaporina 1/química , Aquaporinas/química , Pichia/química , Conformação Proteica , Proteínas de Saccharomyces cerevisiae/química , Transporte Biológico , Cristalografia por Raios X , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Osmose , Água/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa