Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Mol Cell ; 78(5): 890-902.e6, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32416068

RESUMO

Acidic transcription activation domains (ADs) are encoded by a wide range of seemingly unrelated amino acid sequences, making it difficult to recognize features that promote their dynamic behavior, "fuzzy" interactions, and target specificity. We screened a large set of random 30-mer peptides for AD function in yeast and trained a deep neural network (ADpred) on the AD-positive and -negative sequences. ADpred identifies known acidic ADs within transcription factors and accurately predicts the consequences of mutations. Our work reveals that strong acidic ADs contain multiple clusters of hydrophobic residues near acidic side chains, explaining why ADs often have a biased amino acid composition. ADs likely use a binding mechanism similar to avidity where a minimum number of weak dynamic interactions are required between activator and target to generate biologically relevant affinity and in vivo function. This mechanism explains the basis for fuzzy binding observed between acidic ADs and targets.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Fatores de Transcrição/genética , Ativação Transcricional/genética , Sequência de Aminoácidos/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Proteínas de Ligação a DNA/metabolismo , Aprendizado Profundo , Ligação Proteica , Domínios Proteicos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional/fisiologia
3.
Proc Natl Acad Sci U S A ; 112(13): 3961-6, 2015 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-25775526

RESUMO

Formation of the RNA polymerase II (Pol II) open complex (OC) requires DNA unwinding mediated by the transcription factor TFIIH helicase-related subunit XPB/Ssl2. Because XPB/Ssl2 binds DNA downstream from the location of DNA unwinding, it cannot function using a conventional helicase mechanism. Here we show that yeast TFIIH contains an Ssl2-dependent double-stranded DNA translocase activity. Ssl2 tracks along one DNA strand in the 5' → 3' direction, implying it uses the nontemplate promoter strand to reel downstream DNA into the Pol II cleft, creating torsional strain and leading to DNA unwinding. Analysis of the Ssl2 and DNA-dependent ATPase activity of TFIIH suggests that Ssl2 has a processivity of approximately one DNA turn, consistent with the length of DNA unwound during transcription initiation. Our results can explain why maintaining the OC requires continuous ATP hydrolysis and the function of TFIIH in promoter escape. Our results also suggest that XPB/Ssl2 uses this translocase mechanism during DNA repair rather than physically wedging open damaged DNA.


Assuntos
DNA Helicases/metabolismo , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fator de Transcrição TFIIH/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Bases , Domínio Catalítico , DNA/química , Hidrólise , Dados de Sequência Molecular , Ligação Proteica , Saccharomyces cerevisiae/enzimologia , Temperatura , Transcrição Gênica
4.
J Biol Chem ; 291(25): 13040-7, 2016 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-27129284

RESUMO

Saccharomyces cerevisiae RNA polymerase (Pol) II locates transcription start sites (TSS) at TATA-containing promoters by scanning sequences downstream from the site of preinitiation complex formation, a process that involves the translocation of downstream promoter DNA toward Pol II. To investigate a potential role of yeast Pol II transcription in TSS scanning, HIS4 promoter derivatives were generated that limited transcripts in the 30-bp scanned region to two nucleotides in length. Although we found that TSS scanning does not require RNA synthesis, our results revealed that transcription in the purified yeast basal system is largely ATP-independent despite a requirement for the TFIIH DNA translocase subunit Ssl2. This result is rationalized by our finding that, although they are poorer substrates, UTP and GTP can also be utilized by Ssl2. ATPγS is a strong inhibitor of rNTP-fueled translocation, and high concentrations of ATPγS make transcription completely dependent on added dATP. Limiting Pol II function with low ATP concentrations shifted the TSS position downstream. Combined with prior work, our results show that Pol II transcription plays an important role in TSS selection but is not required for the scanning reaction.


Assuntos
RNA Polimerase II/fisiologia , Saccharomyces cerevisiae/enzimologia , Sítio de Iniciação de Transcrição , Sequência de Bases , DNA Helicases/química , DNA Helicases/fisiologia , Regulação Fúngica da Expressão Gênica , Dados de Sequência Molecular , Regiões Promotoras Genéticas , RNA Polimerase II/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/fisiologia , Fator de Transcrição TFIIH/química , Fator de Transcrição TFIIH/fisiologia , Transcrição Gênica
5.
Mol Cell Proteomics ; 11(2): M111.008318, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22067100

RESUMO

Knowledge of protein structures and protein-protein interactions is essential for understanding biological processes. Chemical cross-linking combined with mass spectrometry is an attractive approach for studying protein-protein interactions and protein structure, but to date its use has been limited largely by low yields of informative cross-links (because of inefficient cross-linking reactions) and by the difficulty of confidently identifying the sequences of cross-linked peptide pairs from their fragmentation spectra. Here we present an approach based on a new MS labile cross-linking reagent, BDRG (biotin-aspartate-Rink-glycine), which addresses these issues. BDRG incorporates a biotin handle (for enrichment of cross-linked peptides prior to MS analysis), two pentafluorophenyl ester groups that react with peptide amines, and a labile Rink-based bond between the pentafluorophenyl groups that allows cross-linked peptides to be separated during MS and confidently identified by database searching of their fragmentation spectra. We developed a protocol for the identification of BDRG cross-linked peptides derived from purified or partially purified protein complexes, including software to aid in the identification of different classes of cross-linker-modified peptides. Importantly, our approach permits the use of high accuracy precursor mass measurements to verify the database search results. We demonstrate the utility of the approach by applying it to purified yeast TFIIE, a heterodimeric transcription factor complex, and to a single-step affinity-purified preparation of the 12-subunit RNA polymerase II complex. The results show that the method is effective at identifying cross-linked peptides derived from purified and partially purified protein complexes and provides complementary information to that from other structural approaches. As such, it is an attractive approach to study the topology of protein complexes.


Assuntos
Reagentes de Ligações Cruzadas/farmacologia , Complexos Multiproteicos/metabolismo , Fragmentos de Peptídeos/análise , Mapeamento de Interação de Proteínas , RNA Polimerase II/metabolismo , Fatores de Transcrição TFII/metabolismo , Ácido Aspártico/química , Biotina/química , Cromatografia de Afinidade , Cromatografia Líquida , Glicina/química , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Espectrometria de Massas em Tandem
6.
J Mol Biol ; 433(14): 166813, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-33453189

RESUMO

The general transcription factor TFIIH contains three ATP-dependent catalytic activities. TFIIH functions in nucleotide excision repair primarily as a DNA helicase and in Pol II transcription initiation as a dsDNA translocase and protein kinase. During initiation, the XPB/Ssl2 subunit of TFIIH couples ATP hydrolysis to dsDNA translocation facilitating promoter opening and the kinase module phosphorylates Pol II to facilitate the transition to elongation. These functions are conserved between metazoans and yeast; however, yeast TFIIH also drives transcription start-site scanning in which Pol II scans downstream DNA to locate productive start-sites. The ten-subunit holo-TFIIH from S. cerevisiae has a processive dsDNA translocase activity required for scanning and a structural role in scanning has been ascribed to the three-subunit TFIIH kinase module. Here, we assess the dsDNA translocase activity of ten-subunit holo- and core-TFIIH complexes (i.e. seven subunits, lacking the kinase module) from both S. cerevisiae and H. sapiens. We find that neither holo nor core human TFIIH exhibit processive translocation, consistent with the lack of start-site scanning in humans. Furthermore, in contrast to holo-TFIIH, the S. cerevisiae core-TFIIH also lacks processive translocation and its dsDNA-stimulated ATPase activity was reduced ~5-fold to a level comparable to the human complexes, potentially explaining the reported upstream shift in start-site observed in vitro in the absence of the S. cerevisiae kinase module. These results suggest that neither human nor S. cerevisiae core-TFIIH can translocate efficiently, and that the S. cerevisiae kinase module functions as a processivity factor to allow for robust transcription start-site scanning.


Assuntos
DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , DNA/genética , DNA/metabolismo , Regulação da Expressão Gênica , Fator de Transcrição TFIIH/metabolismo , Sítio de Iniciação de Transcrição , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Iniciação da Transcrição Genética
7.
Mol Cell Biol ; 24(4): 1721-35, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14749387

RESUMO

Three cyclin-dependent kinases, CDK7, -8, and -9, are specifically involved in transcription by RNA polymerase II (Pol II) and target the Pol II C-terminal domain (CTD). The role of CDK7 and CDK8 kinase activity in transcription has been unclear, with CDK7 shown to have variable effects on transcription and CDK8 suggested to repress transcription and/or to target other gene-specific factors. Using a chemical genetics approach, the Saccharomyces cerevisiae homologs of these kinases, Kin28 and Srb10, were engineered to respond to a specific inhibitor and the inhibitor was used to test the role of these kinases in transcription in vivo and in vitro. In vitro, these kinases can both promote transcription, with up to 70% of transcription abolished when both kinases are inhibited together. Similarly, in vivo inhibition of both kinases together gives the strongest decrease in transcription, as measured by chromatin immunoprecipitation of Pol II. Kin28 and Srb10 also have overlapping roles in promoting ATP-dependent dissociation of the preinitiation complex (PIC) into the Scaffold complex. Using the engineered kinases and an ATP analog, specific kinase substrates within the PIC were identified. In addition to the previously known substrate, the Pol II CTD, it was found that Kin28 phosphorylates two subunits of Mediator and Srb10 targets two subunits of TFIID for phosphorylation.


Assuntos
Quinases Ciclina-Dependentes/metabolismo , Proteínas Quinases , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transcrição Gênica , Sistema Livre de Células , Quinase 8 Dependente de Ciclina , Quinases Ciclina-Dependentes/antagonistas & inibidores , Substâncias Macromoleculares , Peptídeos/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Especificidade por Substrato , Fator de Transcrição TFIID/metabolismo , Fatores de Transcrição/metabolismo
8.
Nat Struct Mol Biol ; 24(12): 1139-1145, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29106413

RESUMO

Eukaryotic mRNA transcription initiation is directed by the formation of the megadalton-sized preinitiation complex (PIC). After PIC formation, double-stranded DNA (dsDNA) is unwound to form a single-stranded DNA bubble, and the template strand is loaded into the polymerase active site. DNA opening is catalyzed by Ssl2 (XPB), the dsDNA translocase subunit of the basal transcription factor TFIIH. In yeast, transcription initiation proceeds through a scanning phase during which downstream DNA is searched for optimal start sites. Here, to test models for initial DNA opening and start-site scanning, we measure the DNA-bubble sizes generated by Saccharomyces cerevisiae PICs in real time using single-molecule magnetic tweezers. We show that ATP hydrolysis by Ssl2 opens a 6-base-pair (bp) bubble that grows to 13 bp in the presence of NTPs. These observations support a two-step model wherein ATP-dependent Ssl2 translocation leads to a 6-bp open complex that RNA polymerase II expands via NTP-dependent RNA transcription.


Assuntos
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Fator de Transcrição TFIIB/metabolismo , Fator de Transcrição TFIIH/metabolismo , Fatores de Transcrição TFII/metabolismo , Sítio de Iniciação de Transcrição/fisiologia , Iniciação da Transcrição Genética/fisiologia , Domínio Catalítico/genética , DNA Helicases/metabolismo , Regiões Promotoras Genéticas/genética , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fator de Transcrição TFIIB/genética , Fator de Transcrição TFIIH/genética , Fatores de Transcrição TFII/genética
9.
Mol Cell Biol ; 32(1): 12-25, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22025674

RESUMO

To investigate the function and architecture of the open complex state of RNA polymerase II (Pol II), Saccharomyces cerevisiae minimal open complexes were assembled by using a series of heteroduplex HIS4 promoters, TATA binding protein (TBP), TFIIB, and Pol II. The yeast system demonstrates great flexibility in the position of active open complexes, spanning 30 to 80 bp downstream from TATA, consistent with the transcription start site scanning behavior of yeast Pol II. TFIIF unexpectedly modulates the activity of the open complexes, either repressing or stimulating initiation. The response to TFIIF was dependent on the sequence of the template strand within the single-stranded bubble. Mutations in the TFIIB reader and linker region, which were inactive on duplex DNA, were suppressed by the heteroduplex templates, showing that a major function of the TFIIB reader and linker is in the initiation or stabilization of single-stranded DNA. Probing of the architecture of the minimal open complexes with TFIIB-FeBABE [TFIIB-p-bromoacetamidobenzyl-EDTA-iron(III)] derivatives showed that the TFIIB core domain is surprisingly positioned away from Pol II, and the addition of TFIIF repositions the TFIIB core domain to the Pol II wall domain. Together, our results show an unexpected architecture of minimal open complexes and the regulation of activity by TFIIF and the TFIIB core domain.


Assuntos
Regulação Fúngica da Expressão Gênica , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fator de Transcrição TFIIB/metabolismo , Fatores de Transcrição TFII/metabolismo , Oxirredutases do Álcool/genética , Aminoidrolases/genética , Sequência de Bases , Modelos Moleculares , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Pirofosfatases/genética , RNA Polimerase II/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteína de Ligação a TATA-Box/genética , Proteína de Ligação a TATA-Box/metabolismo , Fator de Transcrição TFIIB/genética , Fatores de Transcrição TFII/genética , Ativação Transcricional
10.
Mol Cell Biol ; 30(10): 2376-90, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20308326

RESUMO

Targets of the tandem Gcn4 acidic activation domains in transcription preinitiation complexes were identified by site-specific cross-linking. The individual Gcn4 activation domains cross-link to three common targets, Gal11/Med15, Taf12, and Tra1, which are subunits of four conserved coactivator complexes, Mediator, SAGA, TFIID, and NuA4. The Gcn4 N-terminal activation domain also cross-links to the Mediator subunit Sin4/Med16. The contribution of the two Gcn4 activation domains to transcription was gene specific and varied from synergistic to less than additive. Gcn4-dependent genes had a requirement for Gal11 ranging from 10-fold dependence to complete Gal11 independence, while the Gcn4-Taf12 interaction did not significantly contribute to the expression of any gene studied. Complementary methods identified three conserved Gal11 activator-binding domains that bind each Gcn4 activation domain with micromolar affinity. These Gal11 activator-binding domains contribute additively to transcription activation and Mediator recruitment at Gcn4- and Gal11-dependent genes. Although we found that the conserved Gal11 KIX domain contributes to Gal11 function, we found no evidence of specific Gcn4-KIX interaction and conclude that the Gal11 KIX domain does not function by specific interaction with Gcn4. Our combined results show gene-specific coactivator requirements, a surprising redundancy in activator-target interactions, and an activator-coactivator interaction mediated by multiple low-affinity protein-protein interactions.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Complexo Mediador/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ativação Transcricional , Fatores de Transcrição de Zíper de Leucina Básica/química , Fatores de Transcrição de Zíper de Leucina Básica/genética , Regulação Fúngica da Expressão Gênica , Complexo Mediador/química , Complexo Mediador/genética , Ligação Proteica , Estrutura Terciária de Proteína , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Fatores Associados à Proteína de Ligação a TATA/genética , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fator de Transcrição TFIID/genética , Fator de Transcrição TFIID/metabolismo
11.
Mol Cell ; 18(3): 369-78, 2005 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-15866178

RESUMO

Site-specific photocrosslinkers positioned within the central transcription-activating region of yeast Gcn4 were used to identify, in an unbiased way, three polypeptides in direct physical proximity to the activator during the process of transcription activation. Crosslinking was specific and did not change during different steps of the transcription cycle. The crosslinking targets were identified as Tra1, Gal11, and Taf12, subunits of four complexes (SAGA, NuA4, Mediator, and TFIID) known to play a role in gene regulation. Using this crosslinking assay, an activating region mutant, and extracts depleted of individual complexes containing the crosslinking targets, we found that contact with Tra1/SAGA is critical for activation, Gal11 contact has a modest effect on activation, and contact with TFIID and NuA4 is of little or no importance for activation under our conditions. Thus, a single activating region contacts multiple factors, and each contact makes differential contributions to transcriptional activation.


Assuntos
Proteínas de Ligação a DNA/química , Regulação da Expressão Gênica , Peptídeos/metabolismo , Proteínas Quinases/química , Proteínas de Saccharomyces cerevisiae/química , Transcrição Gênica , Sequência de Aminoácidos , Reagentes de Ligações Cruzadas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Dados de Sequência Molecular , Complexos Multiproteicos , Proteínas Quinases/metabolismo , Subunidades Proteicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fator de Transcrição TFIID/genética , Fator de Transcrição TFIID/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa