Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Am J Physiol Heart Circ Physiol ; 326(3): H860-H869, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38276948

RESUMO

Targeting alternative exons for therapeutic gain has been achieved in a few instances and potentially could be applied more broadly. The myosin phosphatase (MP) enzyme is a critical hub upon which signals converge to regulate vessel tone. Alternative exon 24 of myosin phosphatase regulatory subunit (Mypt1 E24) is an ideal target as toggling between the two isoforms sets smooth muscle sensitivity to vasodilators such as nitric oxide (NO). This study aimed to develop a gene-based therapy to suppress splicing of Mypt1 E24 thereby switching MP enzyme to the NO-responsive isoform. CRISPR/Cas9 constructs were effective at editing of Mypt1 E24 in vitro; however, targeting of vascular smooth muscle in vivo with AAV9 was inefficient. In contrast, an octo-guanidine conjugated antisense oligonucleotide targeting the 5' splice site of Mypt1 E24 was highly efficient in vivo. It reduced the percent splicing inclusion of Mypt1 E24 from 80% to 10% in mesenteric arteries. The maximal and half-maximal effects occurred at 12.5 and 6.25 mg/kg, respectively. The effect persisted for at least 1 mo without toxicity. This highly effective splice-blocking antisense oligonucleotide could be developed as a novel therapy to reverse vascular dysfunction common to diseases such as hypertension and heart failure.NEW & NOTEWORTHY Alternative exon usage is a major driver of phenotypic diversity in all cell types including smooth muscle. However, the functional significance of most of the hundreds of thousands of alternative exons has not been defined, nor in most cases even tested. If their importance to vascular function were known these alternative exons could represent novel therapeutic targets. Here, we present injection of Vivo-morpholino splice-blocking antisense oligonucleotides as a simple, efficient, and cost-effective method for suppression of alternative exon usage in vascular smooth muscle in vivo.


Assuntos
Músculo Liso Vascular , Oligonucleotídeos Antissenso , Músculo Liso Vascular/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/uso terapêutico , Fosfoproteínas Fosfatases/metabolismo , Éxons , Isoformas de Proteínas/metabolismo , Processamento Alternativo , Fosforilação
2.
Cell Mol Life Sci ; 79(8): 459, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35913515

RESUMO

Differentiation of smooth muscle cells (SMCs) depends on serum response factor (SRF) and its co-activator myocardin (MYOCD). The role of MYOCD for the SMC program of gene transcription is well established. In contrast, the role of MYOCD in control of SMC-specific alternative exon usage, including exon splicing, has not been explored. In the current work we identified four splicing factors (MBNL1, RBPMS, RBPMS2, and RBFOX2) that correlate with MYOCD across human SMC tissues. Forced expression of MYOCD family members in human coronary artery SMCs in vitro upregulated expression of these splicing factors. For global profiling of transcript diversity, we performed RNA-sequencing after MYOCD transduction. We analyzed alternative transcripts with three different methods. Exon-based analysis identified 1637 features with differential exon usage. For example, usage of 3´ exons in MYLK that encode telokin increased relative to 5´ exons, as did the 17 kDa telokin to 130 kDa MYLK protein ratio. Dedicated event-based analysis identified 239 MYOCD-driven splicing events. Events involving MBNL1, MCAM, and ACTN1 were among the most prominent, and this was confirmed using variant-specific PCR analyses. In support of a role for RBPMS and RBFOX2 in MYOCD-driven splicing we found enrichment of their binding motifs around differentially spliced exons. Moreover, knockdown of either RBPMS or RBFOX2 antagonized splicing events stimulated by MYOCD, including those involving ACTN1, VCL, and MBNL1. Supporting an in vivo role of MYOCD-SRF-driven splicing, we demonstrate altered Rbpms expression and splicing in inducible and SMC-specific Srf knockout mice. We conclude that MYOCD-SRF, in part via RBPMS and RBFOX2, induce a program of differential exon usage and alternative splicing as part of the broader program of SMC differentiation.


Assuntos
Processamento Alternativo , Miócitos de Músculo Liso , Processamento Alternativo/genética , Animais , Diferenciação Celular/genética , Éxons/genética , Humanos , Camundongos , Miócitos de Músculo Liso/metabolismo , Proteínas Nucleares , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Proteínas Repressoras/metabolismo , Transativadores
3.
Am J Physiol Regul Integr Comp Physiol ; 322(4): R281-R291, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35107022

RESUMO

Alternative splicing of exon24 (E24) of myosin phosphatase targeting subunit 1 (Mypt1) by setting sensitivity to nitric oxide (NO)/cGMP-mediated relaxation is a key determinant of smooth muscle function. Here we defined expression of myosin phosphatase (MP) subunits and isoforms by creation of new genetic mouse models, assay of human and mouse tissues, and query of public databases. A Mypt1-LacZ reporter mouse revealed that Mypt1 transcription is turned on early in development during smooth muscle differentiation. Mypt1 is not as tightly restricted in its expression as smooth muscle myosin heavy chain (Myh11) and its E6 splice variant. Mypt1 is enriched in mature smooth versus nonmuscle cells. The E24 splice variant and leucine zipper minus protein isoform that it encodes is enriched in phasic versus tonic smooth muscle. In the vascular system, E24 splicing increases as vessel size decreases. In the gastrointestinal system, E24 splicing is most predominant in smooth muscle of the small intestine. Tissue-specific expression of MP subunits and Mypt1 E24 splicing is conserved in humans, whereas a splice variant of the inhibitory subunit (CPI-17) is unique to humans. A Mypt1 E24 mini-gene splicing reporter mouse generated to define patterns of E24 splicing in smooth muscle cells (SMCs) dispersed throughout the organ systems was unsuccessful. In summary, expression of Mypt1 and splicing of E24 is part of the program of smooth muscle differentiation, is further enhanced in phasic smooth muscle, and is conserved in humans. Its low-level expression in nonmuscle cells may confound its measurement in tissue samples.


Assuntos
Músculo Liso Vascular , Miócitos de Músculo Liso , Fosfatase de Miosina-de-Cadeia-Leve , Animais , GMP Cíclico/metabolismo , Humanos , Camundongos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/genética , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Fosforilação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
4.
Pflugers Arch ; 473(4): 611-622, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33145641

RESUMO

Alternative splicing of exon 24 (E24) of the myosin phosphatase regulatory subunit (Mypt1) tunes smooth muscle sensitivity to NO/cGMP-mediated vasorelaxation and thereby controls blood pressure (BP) in otherwise normal mice. This occurs via the toggling in or out of a C-terminal leucine zipper (LZ) motif required for hetero-dimerization with and activation by cGMP-dependent protein kinase cGK1α. Here we tested the hypothesis that editing (deletion) of E24, by shifting to the LZ positive isoform of Mypt1, would suppress the hypertensive response to angiotensin II (AngII). To test this, mice underwent tamoxifen-inducible and smooth muscle-specific deletion of E24 (E24 cKO) at age 6 weeks followed by a chronic slow-pressor dose of AngII (400 ng/kg/min) plus additional stressors. E24 cKO suppressed the hypertensive response to AngII alone or with the addition of a high salt diet. This effect was not a function of altered salt balance as there were no differences in intake or renal excretion of sodium. This effect was NO dependent as L-NAME in the drinking water caused an exaggerated hypertensive response in the E24cKO mice. E24cKO mouse mesenteric arteries were more sensitive to DEA/NO-induced vasorelaxation and less responsive to AngII- and α-adrenergic-induced vasoconstriction at baseline. Only the latter two effects were still present after 2 weeks of chronic AngII treatment. We conclude that editing of Mypt1 E24, by shifting the expression of naturally occurring isoforms and sensitizing to NO-mediated vasodilation, could be a novel approach to the treatment of human hypertension.


Assuntos
Angiotensina II/metabolismo , Hipertensão/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/genética , Óxido Nítrico/metabolismo , Vasodilatação , Animais , Hipertensão/genética , Hipertensão/fisiopatologia , Zíper de Leucina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiologia , Mutação , Fosfatase de Miosina-de-Cadeia-Leve/química , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo
5.
Dev Biol ; 422(2): 171-185, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27940158

RESUMO

A critical transition occurs near mid-gestation of mammalian pregnancy. Prior to this transition, low concentrations of oxygen (hypoxia) signaling through Hypoxia Inducible Factor (HIF) functions as a morphogen for the placenta and fetal organs. Subsequently, functional coupling of the placenta and fetal cardiovascular system for oxygen (O2) transport is required to support the continued growth and development of the fetus. Here we tested the hypothesis that Hif-1α is required in maternal cells for placental morphogenesis and function. We used Tamoxifen-inducible Cre-Lox to inactivate Hif-1α in maternal tissues at E8.5 (MATcKO), and used ODD-Luciferase as a reporter of hypoxia in placenta and fetal tissues. MATcKO of Hif-1α reduced the number of uterine natural killer (uNK) cells and Tpbpa-positve trophoblast cells in the maternal decidua at E13.5 -15.5. There were dynamic changes in all three layers of E13.5-15.5 MATcKO placenta. Of note was the under-development of the labyrinth at E15.5 associated with reduced Ki67 and increased TUNEL staining consistent with reduced cell proliferation and increased apoptosis. Labyrinth defects were particularly evident in placentas connected to effectively HIF-1α heterozygous null embryos. MATcKO had no effect on basal ODD-Luciferase activity in fetal organs (heart, liver, brain) at any stage, but at E13.5-15.5 resulted in enhanced induction of the ODD-Luciferase hypoxia reporter when the dam's inspired O2 was reduced to 8% for 4 hours. MATcKO also slowed the growth after E13.5 of fetuses that were effectively heterozygous for Hif-1α, with most being non-viable at E15.5. The hearts of these E15.5 fetuses were abnormal with reduction in size, thickened epicardium and mesenchymal septum. We conclude that maternal HIF-1α is required for placentation including recruitment of uNK and trophoblast cells into the maternal decidua and other trophoblast cell behaviors. The placental defects render the fetus vulnerable to O2 deprivation after mid-gestation.


Assuntos
Hipóxia Celular/fisiologia , Coração/fisiopatologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Placenta/embriologia , Placentação/genética , Animais , Apoptose , Proliferação de Células , Feminino , Coração/crescimento & desenvolvimento , Cardiopatias Congênitas/embriologia , Marcação In Situ das Extremidades Cortadas , Células Matadoras Naturais/imunologia , Camundongos , Oxigênio/metabolismo , Placenta/anormalidades , Placenta/citologia , Placentação/fisiologia , Gravidez , Proteínas da Gravidez/metabolismo , Trofoblastos/metabolismo
6.
Am J Physiol Heart Circ Physiol ; 310(11): H1715-24, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27084390

RESUMO

The cGMP activated kinase cGK1α is targeted to its substrates via leucine zipper (LZ)-mediated heterodimerization and thereby mediates vascular smooth muscle (VSM) relaxation. One target is myosin phosphatase (MP), which when activated by cGK1α results in VSM relaxation even in the presence of activating calcium. Variants of MP regulatory subunit Mypt1 are generated by alternative splicing of the 31 nt exon 24 (E24), which, by changing the reading frame, codes for isoforms that contain or lack the COOH-terminal LZ motif (E24+/LZ-; E24-/LZ+). Expression of these isoforms is vessel specific and developmentally regulated, modulates in disease, and is proposed to confer sensitivity to nitric oxide (NO)/cGMP-mediated vasorelaxation. To test this, mice underwent Tamoxifen-inducible and smooth muscle-specific knockout of E24 (E24 cKO) after weaning. Deletion of a single allele of E24 (shift to Mypt1 LZ+) enhanced vasorelaxation of first-order mesenteric arteries (MA1) to diethylamine-NONOate (DEA/NO) and to cGMP in permeabilized and calcium-clamped arteries and lowered blood pressure. There was no further effect of deletion of both E24 alleles, indicating high sensitivity to shift of Mypt1 isoforms. However, a unique property of MA1s from homozygous E24 cKOs was significantly reduced force generation to α-adrenergic activation. Furthermore 2 wk of high-salt (4% NaCl) diet increased MA1 force generation to phenylephrine in control mice, a response that was markedly suppressed in the E24 cKO homozygotes. Thus Mypt1 E24 splice variants tune arterial reactivity and could be worthy targets for lowering vascular resistance in disease states.


Assuntos
Artérias Mesentéricas/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Vasodilatação/efeitos dos fármacos , Alelos , Processamento Alternativo , Animais , Artérias Mesentéricas/efeitos dos fármacos , Camundongos , Camundongos Knockout , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/genética , Isoformas de Proteínas/metabolismo , Cloreto de Sódio/farmacologia
7.
Am J Physiol Cell Physiol ; 308(4): C289-96, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25428883

RESUMO

Diversity of smooth muscle within the vascular system is generated by alternative splicing of exons, yet there is limited understanding of its timing or control mechanisms. We examined splicing of myosin phosphatase regulatory subunit (Mypt1) exon 24 (E24) in relation to smooth muscle myosin heavy chain (Smmhc) and smoothelin (Smtn) alternative exons (Smmhc E6 and Smtn E20) during maturation of mouse mesenteric artery (MA) smooth muscle. The role of transformer 2ß (Tra2ß), a master regulator of splicing in flies, in maturation of arterial smooth muscle was tested through gene inactivation. Splicing of alternative exons in bladder smooth muscle was examined for comparative purposes. MA smooth muscle maturation began after postnatal week 2 and was complete at maturity, as indicated by switching to Mypt1 E24+ and Smtn E20- splice variants and 11-fold induction of Smmhc. Similar changes in bladder were complete by postnatal day 3. Splicing of Smmhc E6 was temporally dissociated from Mypt1 E24 and Smtn E20 and discordant between arteries and bladder. Tamoxifen-induced smooth muscle-specific inactivation of Tra2ß within the first week of life but not in maturity reduced splicing of Mypt1 E24 in MAs. Inactivation of Tra2ß causing a switch to the isoform of MYPT1 containing the COOH-terminal leucine zipper motif (E24-) increased arterial sensitivity to cGMP-mediated relaxation. In conclusion, maturation of mouse MA smooth muscle begins postnatally and continues until sexual maturity. TRA2ß is required for specification during this period of maturation, and its inactivation alters the contractile properties of mature arterial smooth muscle.


Assuntos
Processamento Alternativo , Diferenciação Celular , Éxons , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Quinase de Cadeia Leve de Miosina/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fatores Etários , Animais , GMP Cíclico/análogos & derivados , GMP Cíclico/farmacologia , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Relação Dose-Resposta a Droga , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Técnicas In Vitro , Masculino , Artérias Mesentéricas/enzimologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Quinase de Cadeia Leve de Miosina/genética , Fosfatase de Miosina-de-Cadeia-Leve , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Fenótipo , Proteínas de Ligação a RNA/genética , Fatores de Processamento de Serina-Arginina , Miosinas de Músculo Liso/genética , Miosinas de Músculo Liso/metabolismo , Vasodilatação , Vasodilatadores/farmacologia
8.
Am J Physiol Heart Circ Physiol ; 309(9): H1468-78, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26371173

RESUMO

We examined the effect of stress in the first 2 wk of life induced by brief periods of daily maternal separation on developmental programming of rat small resistance mesenteric arteries (MAs). In MAs of littermate controls, mRNAs encoding mediators of vasoconstriction, including the α1a-adrenergic receptor, smooth muscle myosin heavy chain, and CPI-17, the inhibitory subunit of myosin phosphatase, increased from after birth through sexual [postnatal day (PND) 35] and full maturity, up to ∼80-fold, as measured by quantitative PCR. This was commensurate with two- to fivefold increases in maximum force production to KCl depolarization, calcium, and the α-adrenergic agonist phenylephrine, and increasing systolic blood pressure. Rats exposed to maternal separation stress as neonates had markedly accelerated trajectories of maturation of arterial contractile gene expression and function measured at PND14 or PND21 (weaning), 1 wk after the end of the stress protocol. This was suppressed by the α-adrenergic receptor blocker terazosin (0.5 mg·kg ip(-1)·day(-1)), indicating dependence on stress activation of sympathetic signaling. Due to the continued maturation of MAs in control rats, by sexual maturity (PND35) and into adulthood, no differences were observed in arterial function or response to a second stressor in rats stressed as neonates. Thus early life stress misprograms resistance artery smooth muscle, increasing vasoconstrictor function and blood pressure. This effect wanes in later stages, suggesting plasticity during arterial maturation. Further studies are indicated to determine whether stress in different periods of arterial maturation may cause misprogramming persisting through maturity and the potential salutary effect of α-adrenergic blockade in suppression of this response.


Assuntos
Pressão Sanguínea/genética , Regulação da Expressão Gênica no Desenvolvimento , Privação Materna , Artérias Mesentéricas/metabolismo , Músculo Liso Vascular/metabolismo , RNA Mensageiro/metabolismo , Estresse Psicológico/genética , Agonistas de Receptores Adrenérgicos alfa 1/farmacologia , Antagonistas de Receptores Adrenérgicos alfa 1/farmacologia , Animais , Animais Recém-Nascidos , Pressão Sanguínea/efeitos dos fármacos , Artérias Mesentéricas/crescimento & desenvolvimento , Proteínas Musculares/genética , Músculo Liso Vascular/crescimento & desenvolvimento , Cadeias Pesadas de Miosina/genética , Quinase de Cadeia Leve de Miosina/genética , Fenilefrina/farmacologia , Fosfoproteínas/genética , Prazosina/análogos & derivados , Prazosina/farmacologia , Proteína Fosfatase 1/genética , Ratos , Receptores Adrenérgicos alfa 1/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estresse Psicológico/metabolismo , Vasoconstrição/efeitos dos fármacos , Vasoconstrição/genética , Vasoconstritores/farmacologia , Vasodilatação/efeitos dos fármacos , Vasodilatação/genética
9.
Am J Physiol Heart Circ Physiol ; 308(9): H1039-50, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25724497

RESUMO

Microcirculatory dysfunction may cause tissue malperfusion and progression to organ failure in the later stages of sepsis, but the role of smooth muscle contractile dysfunction is uncertain. Mice were given intraperitoneal LPS, and mesenteric arteries were harvested at 6-h intervals for analyses of gene expression and contractile function by wire myography. Contractile (myosin and actin) and regulatory [myosin light chain kinase and phosphatase subunits (Mypt1, CPI-17)] mRNAs and proteins were decreased in mesenteric arteries at 24 h concordant with reduced force generation to depolarization, Ca(2+), and phenylephrine. Vasodilator sensitivity to DEA/nitric oxide (NO) and cGMP under Ca(2+) clamp were increased at 24 h after LPS concordant with a switch to Mypt1 exon 24- splice variant coding for a leucine zipper (LZ) motif required for PKG-1α activation of myosin phosphatase. This was reproduced by smooth muscle-specific deletion of Mypt1 exon 24, causing a shift to the Mypt1 LZ+ isoform. These mice had significantly lower resting blood pressure than control mice but similar hypotensive responses to LPS. The vasodilator sensitivity of wild-type mice to DEA/NO, but not cGMP, was increased at 6 h after LPS. This was abrogated in mice with a redox dead version of PKG-1α (Cys42Ser). Enhanced vasorelaxation in early endotoxemia is mediated by redox signaling through PKG-1α but in later endotoxemia by myosin phosphatase isoform shifts enhancing sensitivity to NO/cGMP as well as smooth muscle atrophy. Muscle atrophy and modulation may be a novel target to suppress microcirculatory dysfunction; however, inactivation of inducible NO synthase, treatment with the IL-1 antagonist IL-1ra, or early activation of α-adrenergic signaling did not suppressed this response.


Assuntos
Lipopolissacarídeos , Proteínas Musculares/metabolismo , Músculo Liso Vascular/enzimologia , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Óxido Nítrico/metabolismo , Fosfoproteínas/metabolismo , Sepse/enzimologia , Transdução de Sinais , Vasodilatação , Animais , GMP Cíclico/metabolismo , Proteína Quinase Dependente de GMP Cíclico Tipo I/deficiência , Proteína Quinase Dependente de GMP Cíclico Tipo I/genética , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica , Genótipo , Peptídeos e Proteínas de Sinalização Intracelular , Isoenzimas , Masculino , Artérias Mesentéricas/enzimologia , Artérias Mesentéricas/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microcirculação , Proteínas Musculares/genética , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/fisiopatologia , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/enzimologia , Atrofia Muscular/fisiopatologia , Quinase de Cadeia Leve de Miosina/deficiência , Quinase de Cadeia Leve de Miosina/genética , Fosfatase de Miosina-de-Cadeia-Leve/genética , Óxido Nítrico Sintase Tipo II/deficiência , Óxido Nítrico Sintase Tipo II/genética , Oxirredução , Fenótipo , Fosfoproteínas/genética , RNA Mensageiro/metabolismo , Sepse/induzido quimicamente , Sepse/genética , Sepse/fisiopatologia , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Vasoconstritores/farmacologia , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
10.
Microvasc Res ; 98: 166-71, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24534069

RESUMO

Myosin phosphatase (MP) is a key target of signaling pathways that regulate smooth muscle tone and blood flow. Alternative splicing of MP targeting subunit (MYPT1) exon 24 (E24) generates isoforms with variable presence of a C-terminal leucine zipper (LZ) required for activation of MP by NO/cGMP. Here we examined the expression of MP and associated genes in a disease model in the coronary circulation. Female Yucatan miniature swine remained sedentary or were exercise-trained beginning eight weeks after placement of an ameroid constrictor around the left circumflex (LCX) artery. Fourteen weeks later epicardial arteries (~1mm) and resistance arterioles (~125 µm) were harvested and assayed for gene expression. MYPT1 isoforms were distinct in the epicardial arteries (E24-/LZ+) and resistance arterioles (E24+/LZ-) and unchanged by exercise training or coronary occlusion. MYPT1, CPI-17 and PDE5 mRNA levels were not different between arteries and arterioles while Kir2.1 and eNOS were 6.6-fold and 3.9-fold higher in the arterioles. There were no significant changes in transcript abundance in epicardial arteries of the collateralized (LCX) vs. non-occluded left anterior descending (LAD) territories, or in exercise-trained vs. sedentary pigs. There was a significant 1.2 fold increase in CPI-17 in collateral-dependent arterioles, independent of exercise, and a significant 1.7 fold increase in PDE5 in arterioles from exercise-trained pigs, independent of occlusion. We conclude that differences in MYPT1 E24 (LZ) isoforms, eNOS, and Kir2.1 distinguish epicardial arteries and resistance coronary arterioles. Up-regulation of coronary arteriolar PDE5 by exercise and CPI-17 by chronic occlusion could contribute to altered vasomotor responses and requires further study.


Assuntos
Oclusão Coronária/enzimologia , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Condicionamento Físico Animal , Processamento Alternativo , Animais , Arteríolas/metabolismo , Sequência de Bases , Circulação Coronária , Modelos Animais de Doenças , Feminino , Humanos , Isoenzimas/metabolismo , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie , Suínos , Porco Miniatura
11.
J Biol Chem ; 288(16): 11191-202, 2013 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-23482558

RESUMO

Notch receptors and ligands mediate heterotypic cell signaling that is required for normal vascular development. Dysregulation of select Notch receptors in mouse vascular smooth muscle (VSM) and in genetic human syndromes causes functional impairment in some regional circulations, the mechanistic basis of which is undefined. In this study, we used a dominant-negative Mastermind-like (DNMAML1) to block signaling through all Notch receptors specifically in VSM to more broadly test a functional role for this pathway in vivo. Mutant DNMAML1-expressing mice exhibited blunted blood pressure responses to vasoconstrictors, and their aortic, femoral, and mesenteric arteries had reduced contractile responses to agonists and depolarization in vitro. The mutant arteries had significant and specific reduction in the expression and activity of myosin light chain kinase (MLCK), a primary regulator of VSM force production. Conversely, activated Notch signaling in VSM cells induced endogenous MLCK transcript levels. We identified MLCK as a direct target of activated Notch receptor as demonstrated by an evolutionarily conserved Notch-responsive element within the MLCK promoter that binds the Notch receptor complex and is required for transcriptional activity. We conclude that Notch signaling through the transcriptional control of key regulatory proteins is required for contractile responses of mature VSM. Genetic or pharmacological manipulation of Notch signaling is a potential strategy for modulating arterial function in human disease.


Assuntos
Regulação da Expressão Gênica , Proteínas Musculares/biossíntese , Músculo Liso Vascular/metabolismo , Proteínas Nucleares/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Animais , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/metabolismo , Doenças Genéticas Inatas/fisiopatologia , Humanos , Camundongos , Camundongos Transgênicos , Contração Muscular/genética , Proteínas Musculares/genética , Músculo Liso Vascular/patologia , Músculo Liso Vascular/fisiopatologia , Quinase de Cadeia Leve de Miosina/biossíntese , Quinase de Cadeia Leve de Miosina/genética , Proteínas Nucleares/genética , Receptores Notch/genética , Fatores de Transcrição/genética , Transcrição Gênica/genética , Doenças Vasculares/genética , Doenças Vasculares/metabolismo , Doenças Vasculares/fisiopatologia , Vasoconstrição/genética
12.
Am J Physiol Heart Circ Physiol ; 306(2): H163-72, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24186099

RESUMO

Each regional circulation has unique requirements for blood flow and thus unique mechanisms by which it is regulated. In this review we consider the role of smooth muscle contractile diversity in determining the unique properties of selected regional circulations and its potential influence on drug targeting in disease. Functionally smooth muscle diversity can be dichotomized into fast versus slow contractile gene programs, giving rise to phasic versus tonic smooth muscle phenotypes, respectively. Large conduit vessel smooth muscle is of the tonic phenotype; in contrast, there is great smooth muscle contractile diversity in the other parts of the vascular system. In the renal circulation, afferent and efferent arterioles are arranged in series and determine glomerular filtration rate. The afferent arteriole has features of phasic smooth muscle, whereas the efferent arteriole has features of tonic smooth muscle. In the splanchnic circulation, the portal vein and hepatic artery are arranged in parallel and supply blood for detoxification and metabolism to the liver. Unique features of this circulation include the hepatic-arterial buffer response to regulate blood flow and the phasic contractile properties of the portal vein. Unique features of the pulmonary circulation include the low vascular resistance and hypoxic pulmonary vasoconstriction, the latter attribute inherent to the smooth muscle cells but the mechanism uncertain. We consider how these unique properties may allow for selective drug targeting of regional circulations for therapeutic benefit and point out gaps in our knowledge and areas in need of further investigation.


Assuntos
Circulação Hepática , Contração Muscular , Músculo Liso Vascular/metabolismo , Circulação Pulmonar , Circulação Renal , Animais , Humanos , Músculo Liso Vascular/fisiologia
13.
Am J Physiol Heart Circ Physiol ; 307(4): H563-73, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24929853

RESUMO

There is evidence for developmental origins of vascular dysfunction yet little understanding of maturation of vascular smooth muscle (VSM) of regional circulations. We measured maturational changes in expression of myosin phosphatase (MP) and the broader VSM gene program in relation to mesenteric small resistance artery (SRA) function. We then tested the role of the sympathetic nervous system (SNS) in programming of SRAs and used genetically engineered mice to define the role of MP isoforms in the functional maturation of the mesenteric circulation. Maturation of rat mesenteric SRAs as measured by qPCR and immunoblotting begins after the second postnatal week and is not complete until maturity. It is characterized by induction of markers of VSM differentiation (smMHC, γ-, α-actin), CPI-17, an inhibitory subunit of MP and a key target of α-adrenergic vasoconstriction, α1-adrenergic, purinergic X1, and neuropeptide Y1 receptors of sympathetic signaling. Functional correlates include maturational increases in α-adrenergic-mediated force and calcium sensitization of force production (MP inhibition) measured in first-order mesenteric arteries ex vivo. The MP regulatory subunit Mypt1 E24+/LZ- isoform is specifically upregulated in SRAs during maturation. Conditional deletion of mouse Mypt1 E24 demonstrates that splicing of E24 causes the maturational reduction in sensitivity to cGMP-mediated vasorelaxation (MP activation). Neonatal chemical sympathectomy (6-hydroxydopamine) suppresses maturation of SRAs with minimal effect on a conduit artery. Mechanical denervation of the mature rat renal artery causes a reversion to the immature gene program. We conclude that the SNS captures control of the mesenteric circulation by programming maturation of the SRA smooth muscle.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Artérias Mesentéricas/metabolismo , Artéria Renal/metabolismo , Sistema Nervoso Simpático/fisiologia , Actinas/genética , Actinas/metabolismo , Animais , Diferenciação Celular , GMP Cíclico/metabolismo , Masculino , Artérias Mesentéricas/crescimento & desenvolvimento , Artérias Mesentéricas/inervação , Camundongos , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiologia , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Quinase de Cadeia Leve de Miosina/genética , Quinase de Cadeia Leve de Miosina/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/genética , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Ratos , Ratos Sprague-Dawley , Artéria Renal/crescimento & desenvolvimento , Artéria Renal/inervação , Sistema Nervoso Simpático/crescimento & desenvolvimento , Vasoconstrição , Vasodilatadores/farmacologia
14.
Microcirculation ; 21(3): 239-48, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24112301

RESUMO

The dephosphorylation of myosin by the MP causes smooth muscle relaxation. MP is also a key target of signals that regulate vascular tone and thus blood flow and pressure. Here, we review studies from the past two decades that support the hypothesis that the regulated expression of MP subunits is a critical determinant of smooth muscle responses to constrictor and dilator signals. In particular, the highly regulated splicing of the regulatory subunit Mypt1 Exon 24 is proposed to tune sensitivity to NO/cGMP-mediated relaxation. The regulated transcription of the MP inhibitory subunit CPI-17 is proposed to determine sensitivity to agonist-mediated constriction. The expression of these subunits is specific in the microcirculation and varies in developmental and disease contexts. To date, the relationship between MP subunit expression and vascular function in these different contexts is correlative; confirmation of the hypothesis will require the generation of genetically engineered mice to test the role of MP subunits and their isoforms in the specificity of vascular smooth muscle responses to constrictor and dilator signals.


Assuntos
Músculo Liso Vascular/enzimologia , Músculo Liso Vascular/fisiologia , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Animais , Sinalização do Cálcio , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Camundongos , Microvasos/enzimologia , Microvasos/fisiologia , Modelos Cardiovasculares , Contração Muscular/fisiologia , Proteínas Musculares , Quinase de Cadeia Leve de Miosina/química , Quinase de Cadeia Leve de Miosina/genética , Quinase de Cadeia Leve de Miosina/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/química , Fosfatase de Miosina-de-Cadeia-Leve/genética , Fosfoproteínas , Subunidades Proteicas , Transdução de Sinais , Vasoconstrição/fisiologia , Vasodilatação/fisiologia
15.
Am J Physiol Regul Integr Comp Physiol ; 307(3): R256-70, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24898838

RESUMO

Variability in myosin phosphatase (MP) subunits may provide specificity in signaling pathways that regulate muscle tone. We utilized public databases and computational algorithms to investigate the phylogenetic diversity of MP regulatory (PPP1R12A-C) and inhibitory (PPP1R14A-D) subunits. The comparison of exonic coding sequences and expression data confirmed or refuted the existence of isoforms and their tissue-specific expression in different model organisms. The comparison of intronic and exonic sequences identified potential expressional regulatory elements. As examples, smooth muscle MP regulatory subunit (PPP1R12A) is highly conserved through evolution. Its alternative exon E24 is present in fish through mammals with two invariant features: 1) a reading frame shift generating a premature termination codon and 2) a hexanucleotide sequence adjacent to the 3' splice site hypothesized to be a novel suppressor of exon splicing. A characteristic of the striated muscle MP regulatory subunit (PPP1R12B) locus is numerous and phylogenetically variable transcriptional start sites. In fish this locus only codes for the small (M21) subunit, suggesting the primordial function of this gene. Inhibitory subunits show little intragenic variability; their diversity is thought to have arisen by expansion and tissue-specific expression of different gene family members. We demonstrate differences in the regulatory landscape between smooth muscle enriched (PPP1R14A) and more ubiquitously expressed (PPP1R14B) family members and identify deeply conserved intronic sequence and predicted transcriptional cis-regulatory elements. This bioinformatic and computational study has uncovered a number of attributes of MP subunits that supports selection of ideal model organisms and testing of hypotheses regarding their physiological significance and regulated expression.


Assuntos
Biodiversidade , Biologia Computacional , Simulação por Computador , Fosfatase de Miosina-de-Cadeia-Leve/análise , Fosfatase de Miosina-de-Cadeia-Leve/genética , Subunidades Proteicas/análise , Subunidades Proteicas/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Galinhas , Bases de Dados de Proteínas , Dípteros , Humanos , Camundongos , Modelos Biológicos , Modelos Genéticos , Dados de Sequência Molecular , Fosfatase de Miosina-de-Cadeia-Leve/química , Oligoquetos , Filogenia , Subunidades Proteicas/química , Peixe-Zebra
16.
J Biol Chem ; 287(20): 16575-85, 2012 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-22437831

RESUMO

Alternative splicing of the smooth muscle myosin phosphatase targeting subunit (Mypt1) exon 23 (E23) is tissue-specific and developmentally regulated and, thus, an attractive model for the study of smooth muscle phenotypic specification. We have proposed that Tra2ß functions as a tissue-specific activator of Mypt1 E23 splicing on the basis of concordant expression patterns and Tra2ß activation of Mypt1 E23 mini-gene splicing in vitro. In this study we examined the relationship between Tra2ß and Mypt1 E23 splicing in vivo in the mouse. Tra2ß was 2- to 5-fold more abundant in phasic smooth muscle tissues, such as the portal vein, small intestine, and small mesenteric artery, in which Mypt1 E23 is predominately included as compared with the tonic smooth muscle tissues, such as the aorta and inferior vena cava, in which Mypt1 E23 is predominately skipped. Tra2ß was up-regulated in the small intestine postnatally, concordant with a switch to Mypt1 E23 splicing. Targeting of Tra2ß in smooth muscle cells using SM22α-Cre caused a substantial reduction in Mypt1 E23 inclusion specifically in the intestinal smooth muscle of heterozygotes, indicating sensitivity to Tra2ß gene dosage. The switch to the Mypt1 E23 skipped isoform coding for the C-terminal leucine zipper motif caused increased sensitivity of the muscle to the relaxant effects of 8-Br-cyclic guanosine monophosphate (cGMP). We conclude that Tra2ß is necessary for the tissue-specific splicing of Mypt1 E23 in the phasic intestinal smooth muscle. Tra2ß, by regulating the splicing of Mypt1 E23, sets the sensitivity of smooth muscle to cGMP-mediated relaxation.


Assuntos
Processamento Alternativo/fisiologia , Éxons/fisiologia , Proteínas Musculares/metabolismo , Miócitos de Músculo Liso/metabolismo , Quinase de Cadeia Leve de Miosina/biossíntese , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , GMP Cíclico/genética , GMP Cíclico/metabolismo , Isoenzimas/biossíntese , Isoenzimas/genética , Camundongos , Camundongos Transgênicos , Proteínas Musculares/genética , Relaxamento Muscular/fisiologia , Miócitos de Músculo Liso/citologia , Quinase de Cadeia Leve de Miosina/genética , Fosfatase de Miosina-de-Cadeia-Leve , Proteínas Nucleares/genética , Especificidade de Órgãos/fisiologia , Proteínas de Ligação a RNA/genética , Fatores de Processamento de Serina-Arginina
17.
Physiol Rep ; 11(21): e15844, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37960982

RESUMO

Smoothelins are cytoskeletal proteins with a single C-terminal calponin homology domain type 2 (CHD2). Little is known about the significance of variation in SMTN CHD2 domains, addressed here through analysis of public databases. A conserved 152 nt penultimate constitutive exon present in all SMTNs encodes helices II-IV of CHD2 with high identity (nt/aa 63/65%). Variable CHD2s of SMTN (helices IV-VI) are generated by alternative splicing of 165 nt exon E20. E20 and the CHD2 it encodes have high homology with the terminal constitutive exon of SMTNL1 (E8; nt/aa 72/75% identity). Unique to these CHD2 variants are a conserved extended nine amino acid C-terminal tail containing KTKK ubiquitination motifs. When E20 of SMTN is skipped (SMTN E20-), constitutive terminal E21 codes for helices IV-VI of CHD2. SMTN E21 has high identity with the terminal exon of SMTNL2 (E8; nt/aa 75/81% identity of aligned sequences) except for coding for a unique extended C-terminus (24 nt; 8aa) conserved only in mammals. SMTN isoform expression is tissue-specific: SMTNE20- and SMTNE20+ are highly expressed in SMC and non-muscle cells, respectively, while SMTNL1 + 2 are highly expressed in skeletal muscle cells. Tissue-specific expression of SMTN CHD2s with unique helices IV-VI suggest tissue-specific functions that require further study.


Assuntos
Proteínas dos Microfilamentos , Proteínas Musculares , Animais , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas do Citoesqueleto/metabolismo , Mamíferos/metabolismo , Calponinas
18.
Physiol Genomics ; 42A(3): 169-87, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20736412

RESUMO

The control of force production in vascular smooth muscle is critical to the normal regulation of blood flow and pressure, and altered regulation is common to diseases such as hypertension, heart failure, and ischemia. A great deal has been learned about imbalances in vasoconstrictor and vasodilator signals, e.g., angiotensin, endothelin, norepinephrine, and nitric oxide, that regulate vascular tone in normal and disease contexts. In contrast there has been limited study of how the phenotypic state of the vascular smooth muscle cell may influence the contractile response to these signaling pathways dependent upon the developmental, tissue-specific (vascular bed) or disease context. Smooth, skeletal, and cardiac muscle lineages are traditionally classified into fast or slow sublineages based on rates of contraction and relaxation, recognizing that this simple dichotomy vastly underrepresents muscle phenotypic diversity. A great deal has been learned about developmental specification of the striated muscle sublineages and their phenotypic interconversions in the mature animal under the control of mechanical load, neural input, and hormones. In contrast there has been relatively limited study of smooth muscle contractile phenotypic diversity. This is surprising given the number of diseases in which smooth muscle contractile dysfunction plays a key role. This review focuses on smooth muscle contractile phenotypic diversity in the vascular system, how it is generated, and how it may determine vascular function in developmental and disease contexts.


Assuntos
Hemodinâmica/fisiologia , Contração Muscular/fisiologia , Músculo Liso Vascular/fisiologia , Transdução de Sinais/fisiologia , Animais , Vasos Sanguíneos/inervação , Vasos Sanguíneos/fisiologia , Humanos , Hipertensão/fisiopatologia , Modelos Biológicos , Músculo Liso Vascular/irrigação sanguínea , Músculo Liso Vascular/inervação , Doenças Neuromusculares/fisiopatologia
19.
Circ Res ; 102(11): 1331-9, 2008 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-18467628

RESUMO

The cardiac outflow tract (OFT) of birds and mammals undergoes complex remodeling in the transition to a dual circulation. We have previously suggested a role of myocardial hypoxia and hypoxia inducible factor (HIF)-1 in the apoptosis-dependent remodeling of the OFT. In the present study, we transduced recombinant adenovirus-mediated HIF-1alpha in embryonic chick OFT myocardium to test its role in OFT remodeling. HIF-1alpha reduced the prevalence of apoptosis in OFT cardiomyocytes at stages 25 and 30, as determined by lysosome accumulation and caspase-3 activity. Associated conotruncal defects included malrotation of the aorta and excessive infundibular myocardium. HIF-1 targets induced in these gain-of-function experiments included vascular endothelial growth factor (VEGF), inducible nitric oxide synthase, and stromal cell-derived factor-1. To test the role of VEGF in this context, an adenovirus expressing secreted Flk1 (VEGF receptor 2) that binds and blocks VEGF signaling was targeted to the OFT myocardium. This caused increased cell death in the OFT myocardium at stages 25 and 30. Associated conotruncal heart defects included malrotation of the aorta, defects in the subpulmonic infundibulum associated with a small right ventricle, and increased OFT mesenchyme with failure of semilunar valve formation. We conclude that hypoxia signaling through HIF-1 and VEGF provides an autocrine survival signal in the developing cardiac OFT and that perturbation in this pathway causes OFT defects that model congenital human conotruncal heart defects.


Assuntos
Comunicação Autócrina/fisiologia , Coração/embriologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Transdução de Sinais/fisiologia , Adenoviridae/genética , Animais , Apoptose/genética , Comunicação Autócrina/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Embrião de Galinha , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Coração/efeitos dos fármacos , Cardiopatias Congênitas/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução Genética , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
20.
Circ Res ; 103(5): 485-92, 2008 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-18669920

RESUMO

Transformer splicing regulatory proteins determine the sexually dimorphic traits of Drosophila. The role of the vertebrate homologs of Tra-2 in phenotypic specification is undefined. We are using the alternative splicing of the MYPT1 E23 exon as a model for the study of smooth muscle diversification into fast and slow contractile phenotypes. Tra2beta mRNA and protein is expressed at up to 10-fold higher levels in fast smooth muscle tissues such as the rat portal vein and small mesenteric artery, in which E23 is spliced, as compared to the slow smooth muscle tissues of the large arteries and veins, in which E23 is skipped. Tra2beta is upregulated up to 10-fold concordant with the initiation of E23 splicing as the rat portal vein and avian gizzard implement the fast program of gene expression in the perinatal period. In disease models such as portal hypertension and mesenteric artery high/low flow, the portal vein and first order mesenteric artery dynamically downregulate Tra2beta concordant with a shift to E23 skipping and the slow program of gene expression. Tra2beta binds to a highly conserved sequence within E23 and transactivates its splicing in vitro and in vivo; this is abolished with mutation or deletion of this sequence. RNA interference-mediated knockdown of Tra2beta markedly reduces E23 splicing. We propose that Tra2beta has been conserved through evolution and redeployed for the specification of the fast smooth muscle phenotype and may serve as a novel nodal point for the investigation of this process in developmental and disease models.


Assuntos
Processamento Alternativo/fisiologia , Músculo Liso Vascular/citologia , Músculo Liso Vascular/fisiologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Animais , Diferenciação Celular/fisiologia , Éxons/genética , Íntrons/genética , Masculino , Artérias Mesentéricas/citologia , Artérias Mesentéricas/fisiologia , Fibras Musculares de Contração Rápida/citologia , Fibras Musculares de Contração Rápida/fisiologia , Fibras Musculares de Contração Lenta/citologia , Fibras Musculares de Contração Lenta/fisiologia , Fenótipo , Veia Porta/citologia , Veia Porta/fisiologia , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Fatores de Processamento de Serina-Arginina , Transfecção
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa