Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 144(1): 014103, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26747797

RESUMO

The computational study of chemical reactions in complex, wet environments is critical for applications in many fields. It is often essential to study chemical reactions in the presence of applied electrochemical potentials, taking into account the non-trivial electrostatic screening coming from the solvent and the electrolytes. As a consequence, the electrostatic potential has to be found by solving the generalized Poisson and the Poisson-Boltzmann equations for neutral and ionic solutions, respectively. In the present work, solvers for both problems have been developed. A preconditioned conjugate gradient method has been implemented for the solution of the generalized Poisson equation and the linear regime of the Poisson-Boltzmann, allowing to solve iteratively the minimization problem with some ten iterations of the ordinary Poisson equation solver. In addition, a self-consistent procedure enables us to solve the non-linear Poisson-Boltzmann problem. Both solvers exhibit very high accuracy and parallel efficiency and allow for the treatment of periodic, free, and slab boundary conditions. The solver has been integrated into the BigDFT and Quantum-ESPRESSO electronic-structure packages and will be released as an independent program, suitable for integration in other codes.

2.
Phys Rev Lett ; 110(11): 117801, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25166579

RESUMO

Anomalous impurity redistribution after a laser irradiation process in group-IV elements has been reported in numerous papers. In this Letter, we correlate this still unexplained behavior with the peculiar bonding character of the liquid state of group-IV semiconductors. Analyzing the B-Si system in a wide range of experimental conditions we demonstrate that this phenomenon derives from the non-Fickian diffusion transport of B in l-Si. The proposed diffusion model relies on the balance between two impurity states in different bonding configurations: one migrating at higher diffusivity than the other. This microscopic mechanism explains the anomalous B segregation, whereas accurate comparisons between experimental chemical profiles and simulation results validate the model.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(3 Pt 2): 036705, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23031051

RESUMO

Pulsed laser irradiation of damaged solids promotes ultrafast nonequilibrium kinetics, on the submicrosecond scale, leading to microscopic modifications of the material state. Reliable theoretical predictions of this evolution can be achieved only by simulating particle interactions in the presence of large and transient gradients of the thermal field. We propose a kinetic Monte Carlo (KMC) method for the simulation of damaged systems in the extremely far-from-equilibrium conditions caused by the laser irradiation. The reference systems are nonideal crystals containing point defect excesses, an order of magnitude larger than the equilibrium density, due to a preirradiation ion implantation process. The thermal and, eventual, melting problem is solved within the phase-field methodology, and the numerical solutions for the space- and time-dependent thermal field were then dynamically coupled to the KMC code. The formalism, implementation, and related tests of our computational code are discussed in detail. As an application example we analyze the evolution of the defect system caused by P ion implantation in Si under nanosecond pulsed irradiation. The simulation results suggest a significant annihilation of the implantation damage which can be well controlled by the laser fluence.


Assuntos
Artefatos , Lasers , Modelos Químicos , Modelos Estatísticos , Método de Monte Carlo , Silício/química , Silício/efeitos da radiação , Simulação por Computador , Temperatura Alta
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa