Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(31): e2116974119, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35881792

RESUMO

Ribosomal RNA (rRNA) transcription by RNA polymerase I (Pol I) is a critical rate-limiting step in ribosome biogenesis, which is essential for cell survival. Despite its global function, disruptions in ribosome biogenesis cause tissue-specific birth defects called ribosomopathies, which frequently affect craniofacial development. Here, we describe a cellular and molecular mechanism underlying the susceptibility of craniofacial development to disruptions in Pol I transcription. We show that Pol I subunits are highly expressed in the neuroepithelium and neural crest cells (NCCs), which generate most of the craniofacial skeleton. High expression of Pol I subunits sustains elevated rRNA transcription in NCC progenitors, which supports their high tissue-specific levels of protein translation, but also makes NCCs particularly sensitive to rRNA synthesis defects. Consistent with this model, NCC-specific deletion of Pol I subunits Polr1a, Polr1c, and associated factor Tcof1 in mice cell-autonomously diminishes rRNA synthesis, which leads to p53 protein accumulation, resulting in NCC apoptosis and craniofacial anomalies. Furthermore, compound mutations in Pol I subunits and associated factors specifically exacerbate the craniofacial anomalies characteristic of the ribosomopathies Treacher Collins syndrome and Acrofacial Dysostosis-Cincinnati type. Mechanistically, we demonstrate that diminished rRNA synthesis causes an imbalance between rRNA and ribosomal proteins. This leads to increased binding of ribosomal proteins Rpl5 and Rpl11 to Mdm2 and concomitantly diminished binding between Mdm2 and p53. Altogether, our results demonstrate a dynamic spatiotemporal requirement for rRNA transcription during mammalian cranial NCC development and corresponding tissue-specific threshold sensitivities to disruptions in rRNA transcription in the pathogenesis of congenital craniofacial disorders.


Assuntos
Anormalidades Craniofaciais , RNA Polimerase I , RNA Ribossômico , Proteínas Ribossômicas , Crânio , Transcrição Gênica , Animais , Anormalidades Craniofaciais/genética , Disostose Mandibulofacial/genética , Camundongos , Crista Neural/embriologia , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , RNA Polimerase I/metabolismo , RNA Ribossômico/genética , Proteínas Ribossômicas/metabolismo , Crânio/embriologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
2.
Curr Top Dev Biol ; 152: 139-168, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36707210

RESUMO

Craniofacial anomalies often exhibit phenotype variability and non-mendelian inheritance due to their multifactorial origin, involving both genetic and environmental factors. A combination of epidemiologic studies, genome-wide association, and analysis of animal models have provided insight into the effects of gene-environment interactions on craniofacial and brain development and the pathogenesis of congenital disorders. In this chapter, we briefly summarize the etiology and pathogenesis of common craniofacial anomalies, focusing on orofacial clefts, hemifacial microsomia, and microcephaly. We then discuss how environmental risk factors interact with genes to modulate the incidence and phenotype severity of craniofacial anomalies. Identifying environmental risk factors and dissecting their interaction with different genes and modifiers is central to improved strategies for preventing craniofacial anomalies.


Assuntos
Fenda Labial , Fissura Palatina , Animais , Fenda Labial/genética , Fissura Palatina/etiologia , Fissura Palatina/genética , Interação Gene-Ambiente , Estudo de Associação Genômica Ampla , Fenótipo
3.
Front Cell Dev Biol ; 9: 644410, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34095113

RESUMO

Craniofacial malformations are among the most common birth defects in humans and they often have significant detrimental functional, aesthetic, and social consequences. To date, more than 700 distinct craniofacial disorders have been described. However, the genetic, environmental, and developmental origins of most of these conditions remain to be determined. This gap in our knowledge is hampered in part by the tremendous phenotypic diversity evident in craniofacial syndromes but is also due to our limited understanding of the signals and mechanisms governing normal craniofacial development and variation. The principles of Mendelian inheritance have uncovered the etiology of relatively few complex craniofacial traits and consequently, the variability of craniofacial syndromes and phenotypes both within families and between families is often attributed to variable gene expression and incomplete penetrance. However, it is becoming increasingly apparent that phenotypic variation is often the result of combinatorial genetic and non-genetic factors. Major non-genetic factors include environmental effectors such as pregestational maternal diabetes, which is well-known to increase the risk of craniofacial birth defects. The hyperglycemia characteristic of diabetes causes oxidative stress which in turn can result in genotoxic stress, DNA damage, metabolic alterations, and subsequently perturbed embryogenesis. In this review we explore the importance of gene-environment associations involving diabetes, oxidative stress, and DNA damage during cranial neural crest cell development, which may underpin the phenotypic variability observed in specific craniofacial syndromes.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa