Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Artif Organs ; 48(3): 274-284, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37246826

RESUMO

BACKGROUND: Ventilator-induced diaphragm dysfunction occurs rapidly following the onset of mechanical ventilation and has significant clinical consequences. Phrenic nerve stimulation has shown promise in maintaining diaphragm function by inducing diaphragm contractions. Non-invasive stimulation is an attractive option as it minimizes the procedural risks associated with invasive approaches. However, this method is limited by sensitivity to electrode position and inter-individual variability in stimulation thresholds. This makes clinical application challenging due to potentially time-consuming calibration processes to achieve reliable stimulation. METHODS: We applied non-invasive electrical stimulation to the phrenic nerve in the neck in healthy volunteers. A closed-loop system recorded the respiratory flow produced by stimulation and automatically adjusted the electrode position and stimulation amplitude based on the respiratory response. By iterating over electrodes, the optimal electrode was selected. A binary search method over stimulation amplitudes was then employed to determine an individualized stimulation threshold. Pulse trains above this threshold were delivered to produce diaphragm contraction. RESULTS: Nine healthy volunteers were recruited. Mean threshold stimulation amplitude was 36.17 ± 14.34 mA (range 19.38-59.06 mA). The threshold amplitude for reliable nerve capture was moderately correlated with BMI (Pearson's r = 0.66, p = 0.049). Repeating threshold measurements within subjects demonstrated low intra-subject variability of 2.15 ± 1.61 mA between maximum and minimum thresholds on repeated trials. Bilateral stimulation with individually optimized parameters generated reliable diaphragm contraction, resulting in significant inhaled volumes following stimulation. CONCLUSION: We demonstrate the feasibility of a system for automatic optimization of electrode position and stimulation parameters using a closed-loop system. This opens the possibility of easily deployable individualized stimulation in the intensive care setting to reduce ventilator-induced diaphragm dysfunction.


Assuntos
Diafragma , Nervo Frênico , Humanos , Nervo Frênico/fisiologia , Respiração Artificial/efeitos adversos , Eletrodos Implantados , Estimulação Elétrica
2.
Stereotact Funct Neurosurg ; 102(3): 195-202, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38537625

RESUMO

INTRODUCTION: DBS efficacy depends on accuracy. CT-MRI fusion is established for both stereotactic registration and electrode placement verification. The desire to streamline DBS workflows, reduce operative time, and minimize patient transfers has increased interest in portable imaging modalities such as the Medtronic O-arm® and mobile CT. However, these remain expensive and bulky. 3D C-arm fluoroscopy (3DXT) units are a smaller and less costly alternative, albeit incompatible with traditional frame-based localization and without useful soft tissue resolution. We aimed to compare fusion of 3DXT and CT with pre-operative MRI to evaluate if 3DXT-MRI fusion alone is sufficient for accurate registration and reliable targeting verification. We further assess DBS targeting accuracy using a 3DXT workflow and compare radiation dosimetry between modalities. METHODS: Patients underwent robot-assisted DBS implantation using a workflow incorporating 3DXT which we describe. Two intra-operative 3DXT spins were performed for registration and accuracy verification followed by conventional CT post-operatively. Post-operative 3DXT and CT images were independently fused to the same pre-operative MRI sequence and co-ordinates generated for comparison. Registration accuracy was compared to 15 consecutive controls who underwent CT-based registration. Radial targeting accuracy was calculated and radiation dosimetry recorded. RESULTS: Data were obtained from 29 leads in 15 consecutive patients. 3DXT registration accuracy was significantly superior to CT with mean error 0.22 ± 0.03 mm (p < 0.0001). Mean Euclidean electrode tip position variation for CT to MRI versus 3DXT to MRI fusion was 0.62 ± 0.40 mm (range 0.0 mm-1.7 mm). In comparison, direct CT to 3DXT fusion showed electrode tip Euclidean variance of 0.23 ± 0.09 mm. Mean radial targeting accuracy assessed on 3DXT was 0.97 ± 0.54 mm versus 1.15 ± 0.55 mm on CT with differences insignificant (p = 0.30). Mean patient radiation doses were around 80% lower with 3DXT versus CT (p < 0.0001). DISCUSSION: Mobile 3D C-arm fluoroscopy can be safely incorporated into DBS workflows for both registration and lead verification. For registration, the limited field of view requires the use of frameless transient fiducials and is highly accurate. For lead position verification based on MRI co-registration, we estimate there is around a 0.4 mm discrepancy between lead position seen on 3DXT versus CT when corrected for brain shift. This is similar to that described in O-arm® or mobile CT series. For units where logistical or financial considerations preclude the acquisition of a cone beam CT or mobile CT scanner, our data support portable 3D C-arm fluoroscopy as an acceptable alternative with significantly lower radiation exposure.


Assuntos
Estimulação Encefálica Profunda , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Técnicas Estereotáxicas , Tomografia Computadorizada por Raios X , Humanos , Fluoroscopia/métodos , Estimulação Encefálica Profunda/métodos , Estimulação Encefálica Profunda/instrumentação , Tomografia Computadorizada por Raios X/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Feminino , Eletrodos Implantados , Pessoa de Meia-Idade , Idoso , Adulto
3.
Neuromodulation ; 27(3): 557-564, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37921733

RESUMO

BACKGROUND AND OBJECTIVES: Directional deep brain stimulation (DBS) electrodes are increasingly used, but conventional computed tomography (CT) is unable to directly image segmented contacts owing to physics-based resolution constraints. Postoperative electrode segment orientation assessment is necessary because of the possibility of significant deviation during or immediately after insertion. Photon-counting detector (PCD) CT is a relatively novel technology that enables high resolution imaging while addressing several limitations intrinsic to CT. We show how PCD CT can enable clear in vivo imaging of DBS electrodes, including segmented contacts and markers for all major lead manufacturers. MATERIALS AND METHODS: We describe postoperative imaging and reconstruction protocols we have developed to enable optimal lead visualization. PCD CT images were obtained of directional leads from the three major manufacturers and fused with preoperative 3T magnetic resonance imaging (MRI). Radiation dosimetry also was evaluated and compared with conventional imaging controls. Orientation estimates from directly imaged leads were compared with validated software-based reconstructions (derived from standard CT imaging artifact analysis) to quantify congruence in alignment and directional orientation. RESULTS: High-fidelity images were obtained for 15 patients, clearly indicating the segmented contacts and directional markers both on CT alone and when fused to MRI. Our routine imaging protocol is described. Ionizing radiation doses were significantly lower than with conventional CT. For most leads, the directly imaged lead orientations and depths corresponded closely to those predicted by CT artifact-based reconstructions. However, unlike direct imaging, the software reconstructions were susceptible to 180° error in orientation assessment. CONCLUSIONS: High-resolution photon-counting CT can very clearly image segmented DBS electrode contacts and directional markers and unambiguously determine lead orientation, with lower radiation than in conventional imaging. This obviates the need for further imaging and may facilitate anatomically tailored directional programming.


Assuntos
Estimulação Encefálica Profunda , Humanos , Estimulação Encefálica Profunda/métodos , Eletrodos Implantados , Tomografia Computadorizada por Raios X/métodos , Imageamento por Ressonância Magnética , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas
4.
Neuromodulation ; 26(2): 382-393, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35562261

RESUMO

BACKGROUND: Both dopaminergic medication and subthalamic nucleus (STN) deep brain stimulation (DBS) can improve the amplitude and speed of gait in Parkinson disease (PD), but relatively little is known about their comparative effects on gait variability. Gait irregularity has been linked to the degeneration of cholinergic neurons in the pedunculopontine nucleus (PPN). OBJECTIVES: The STN and PPN have reciprocal connections, and we hypothesized that STN DBS might improve gait variability by modulating PPN function. Dopaminergic medication should not do this, and we therefore sought to compare the effects of medication and STN DBS on gait variability. MATERIALS AND METHODS: We studied 11 patients with STN DBS systems on and off with no alteration to their medication, and 15 patients with PD without DBS systems on and off medication. Participants walked for two minutes in each state, wearing six inertial measurement units. Variability has previously often been expressed in terms of SD or coefficient of variation over a testing session, but these measures conflate long-term variability (eg, gradual slowing, which is not necessarily pathological) with short-term variability (true irregularity). We used Poincaré analysis to separate the short- and long-term variability. RESULTS: DBS decreased short-term variability in lower limb gait parameters, whereas medication did not have this effect. In contrast, STN DBS had no effect on arm swing and trunk motion variability, whereas medication increased them, without obvious dyskinesia. CONCLUSIONS: Our results suggest that STN DBS acts through a nondopaminergic mechanism to reduce gait variability. We believe that the most likely explanation is the retrograde activation of cholinergic PPN projection neurons.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Humanos , Doença de Parkinson/terapia , Levodopa/uso terapêutico , Estimulação Encefálica Profunda/métodos , Resultado do Tratamento , Marcha
5.
Mov Disord ; 37(11): 2263-2271, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36054142

RESUMO

BACKGROUND: We have previously shown that wearable technology and machine learning techniques can accurately discriminate between progressive supranuclear palsy (PSP), Parkinson's disease, and healthy controls. To date these techniques have not been applied in longitudinal studies of disease progression in PSP. OBJECTIVES: We aimed to establish whether data collected by a body-worn inertial measurement unit (IMU) network could predict clinical rating scale scores in PSP and whether it could be used to track disease progression. METHODS: We studied gait and postural stability in 17 participants with PSP over five visits at 3-month intervals. Participants performed a 2-minute walk and an assessment of postural stability by standing for 30 seconds with their eyes closed, while wearing an array of six IMUs. RESULTS: Thirty-two gait and posture features were identified, which progressed significantly with time. A simple linear regression model incorporating the three features with the clearest progression pattern was able to detect statistically significant progression 3 months in advance of the clinical scores. A more complex linear regression and a random forest approach did not improve on this. CONCLUSIONS: The reduced variability of the models, in comparison to clinical rating scales, allows a significant change in disease status from baseline to be observed at an earlier stage. The current study sheds light on the individual features that are important in tracking disease progression. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Transtornos Neurológicos da Marcha , Doença de Parkinson , Paralisia Supranuclear Progressiva , Humanos , Paralisia Supranuclear Progressiva/diagnóstico , Doença de Parkinson/diagnóstico , Movimento , Progressão da Doença
6.
Brain ; 144(12): 3589-3596, 2021 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-34293093

RESUMO

Cervical dystonia is a non-degenerative movement disorder characterized by dysfunction of both motor and sensory cortico-basal ganglia networks. Deep brain stimulation targeted to the internal pallidum is an established treatment, but its specific mechanisms remain elusive, and response to therapy is highly variable. Modulation of key dysfunctional networks via axonal connections is likely important. Fifteen patients underwent preoperative diffusion-MRI acquisitions and then progressed to bilateral deep brain stimulation targeting the posterior internal pallidum. Severity of disease was assessed preoperatively and later at follow-up. Scans were used to generate tractography-derived connectivity estimates between the bilateral regions of stimulation and relevant structures. Connectivity to the putamen correlated with clinical improvement, and a series of cortical connectivity-based putaminal parcellations identified the primary motor putamen as the key node (r = 0.70, P = 0.004). A regression model with this connectivity and electrode coordinates explained 68% of the variance in outcomes (r = 0.83, P = 0.001), with both as significant explanatory variables. We conclude that modulation of the primary motor putamen-posterior internal pallidum limb of the cortico-basal ganglia loop is characteristic of successful deep brain stimulation treatment of cervical dystonia. Preoperative diffusion imaging contains additional information that predicts outcomes, implying utility for patient selection and/or individualized targeting.


Assuntos
Estimulação Encefálica Profunda/métodos , Globo Pálido/fisiopatologia , Vias Neurais/fisiopatologia , Putamen/fisiopatologia , Torcicolo/fisiopatologia , Torcicolo/terapia , Adulto , Idoso , Imagem de Difusão por Ressonância Magnética/métodos , Feminino , Globo Pálido/diagnóstico por imagem , Humanos , Masculino , Pessoa de Meia-Idade , Vias Neurais/diagnóstico por imagem , Neuroimagem/métodos , Putamen/diagnóstico por imagem , Torcicolo/diagnóstico por imagem , Resultado do Tratamento
7.
Artif Organs ; 46(10): 1988-1997, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35377472

RESUMO

BACKGROUND: Diaphragm muscle atrophy during mechanical ventilation begins within 24 h and progresses rapidly with significant clinical consequences. Electrical stimulation of the phrenic nerves using invasive electrodes has shown promise in maintaining diaphragm condition by inducing intermittent diaphragm muscle contraction. However, the widespread application of these methods may be limited by their risks as well as the technical and environmental requirements of placement and care. Non-invasive stimulation would offer a valuable alternative method to maintain diaphragm health while overcoming these limitations. METHODS: We applied non-invasive electrical stimulation to the phrenic nerve in the neck in healthy volunteers. Respiratory pressure and flow, diaphragm electromyography and mechanomyography, and ultrasound visualization were used to assess the diaphragmatic response to stimulation. The electrode positions and stimulation parameters were systematically varied in order to investigate the influence of these parameters on the ability to induce diaphragm contraction with non-invasive stimulation. RESULTS: We demonstrate that non-invasive capture of the phrenic nerve is feasible using surface electrodes without the application of pressure, and characterize the stimulation parameters required to achieve therapeutic diaphragm contractions in healthy volunteers. We show that an optimal electrode position for phrenic nerve capture can be identified and that this position does not vary as head orientation is changed. The stimulation parameters required to produce a diaphragm response at this site are characterized and we show that burst stimulation above the activation threshold reliably produces diaphragm contractions sufficient to drive an inspired volume of over 600 ml, indicating the ability to produce significant diaphragmatic work using non-invasive stimulation. CONCLUSION: This opens the possibility of non-invasive systems, requiring minimal specialist skills to set up, for maintaining diaphragm function in the intensive care setting.


Assuntos
Diafragma , Nervo Frênico , Cuidados Críticos , Estimulação Elétrica , Humanos , Nervo Frênico/fisiologia , Respiração Artificial/efeitos adversos , Ventiladores Mecânicos/efeitos adversos
8.
Neuromodulation ; 24(1): 13-21, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32588933

RESUMO

OBJECTIVES: Neuromodulation is a treatment option for people suffering from painful diabetic neuropathy (PDN) unresponsive to conventional pharmacotherapy. We systematically examined the pain outcomes of patients with PDN receiving any type of invasive neuromodulation for treatment of neuropathic pain. MATERIALS AND METHODS: MEDLINE and Embase were searched through 10 January 2020, without language restriction. All study types were included. Two reviewers independently screened publications and extracted data. Quantitative meta-analysis was performed with pain scores converted to a standard 100-point scale. Randomized controlled trial (RCT) scores were pooled using the inverse variance method and expressed as mean differences. RESULTS: RCTs of tonic spinal cord stimulation (t-SCS) showed greater pain improvement than best medical therapy at six months (intention-to-treat: 38/100, 95% CI: 29-47). By per-protocol analysis, case series of t-SCS and dorsal root ganglion stimulation (DRGS) showed improvement by 56 (95% CI: 39-73) and 55 (22-87), respectively, at 12 months. For t-SCS, the rate of failing a therapeutic stimulation trial was 16%, the risk of infection was 4%, and the rate of lead problems requiring surgery to resolve was 4% per year of follow-up. High-frequency SCS and burst SCS both showed efficacy, with few patients studied. CONCLUSION: Efficacious, lasting and safe surgical pain management options are available to diabetic patients suffering from PDN. Tonic-SCS is the established standard of treatment; however, other SCS paradigms and DRGS are emerging as promising treatments offering comparable pain benefits, but with few cases published to date. Randomized controlled trials are ongoing to assess their relative merits.


Assuntos
Diabetes Mellitus , Neuropatias Diabéticas , Neuralgia , Estimulação da Medula Espinal , Neuropatias Diabéticas/terapia , Humanos , Manejo da Dor , Medição da Dor
9.
Br J Anaesth ; 125(1): 67-76, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32336475

RESUMO

BACKGROUND: Subcortical structures, including the basal ganglia, have been proposed to be crucial for arousal, consciousness, and behavioural responsiveness. How the basal ganglia contribute to the loss and recovery of consciousness during anaesthesia has, however, not yet been well characterised. METHODS: Twelve patients with advanced Parkinson's disease, who were undergoing deep brain stimulation (DBS) electrode implantation in the subthalamic nucleus (STN), were included in this study. Local field potentials (LFPs) were recorded from the DBS electrodes and EEG was recorded from the scalp during induction of general anaesthesia (with propofol and sufentanil) and during tracheal intubation. Neural signatures of loss of consciousness and of the expected arousal during intubation were sought in the STN and EEG recordings. RESULTS: Propofol-sufentanil anaesthesia resulted in power increases in delta, theta, and alpha frequencies, and broadband power decreases in higher frequencies in both STN and frontal cortical areas. This was accompanied by increased STN-frontal cortical coherence only in the alpha frequency band (119 [68]%; P=0.0049). We observed temporal activity changes in STN after tracheal intubation, including power increases in high-beta (22-40 Hz) frequency (98 [123]%; P=0.0064) and changes in the power-law exponent in the power spectra at lower frequencies (2-80 Hz), which were not observed in the frontal cortex. During anaesthesia, the dynamic changes in the high-gamma power in STN LFPs correlated with the power-law exponent in the power spectra at lower frequencies (2-80 Hz). CONCLUSIONS: Apart from similar activity changes in both STN and cortex associated with anaesthesia-induced unresponsiveness, we observed specific neuronal activity changes in the STN in response to the anaesthesia and tracheal intubation. We also show that the power-law exponent in the power spectra in the STN was modulated by tracheal intubation in anaesthesia. Our results support the hypothesis that subcortical nuclei may play an important role in the loss and return of responsiveness.


Assuntos
Anestésicos Intravenosos/farmacologia , Estimulação Encefálica Profunda/métodos , Eletroencefalografia/métodos , Intubação Intratraqueal/métodos , Doença de Parkinson/fisiopatologia , Núcleo Subtalâmico/fisiopatologia , Anestesia Geral/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Propofol/farmacologia , Sufentanil/farmacologia
10.
Neuromodulation ; 23(2): 245-251, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31070832

RESUMO

OBJECTIVE: To quantify the relationship between the electrical power requirement to achieve pain relief and the position of the active electrode of dorsal root ganglion stimulators within the spinal nerve root exit foramen. MATERIALS AND METHODS: Retrospective analysis of prospectively collected data of 92 consecutive patients undergoing dorsal root ganglion stimulation (DRGS) for chronic pain in a single center. Cervical and sacral cases, and failed trials/explanted DRGS were excluded, so we report on 57 patients with 78 implanted leads. Anteroposterior and lateral fluoroscopic images of the lead in the exit foramen were examined, and the active electrode positions were put into categories depending on their location relative to fixed anatomical landmarks. The clinical outcome and the power requirements for each of these groups of electrodes were then analyzed. Overall pain outcome was assessed by numeric pain rating scale score pre-operatively and post-operatively. RESULTS: There was no significant relationship between power requirements and mediolateral electrode position, although the lowest average was observed with electrode positions directly below the center of the pedicle. On lateral x-ray, the lowest power requirements were observed in the electrodes positioned superodorsally or dorsally within the foramen. Importantly, power requirements in this location were consistently low, while the power requirements in other locations were not only higher but also much more variable. Electrodes in the superodorsal position required a median output power almost four times lower than electrodes in other positions (p = 0.002). Clinical outcome was not significantly related to power requirement or foraminal position. CONCLUSION: Aiming for a superodorsal electrode position on lateral intraoperative fluoroscopy is desirable, since siting leads in this location reduces the required stimulator output power very substantially and thus will extend battery life. Position within the foramen does not determine clinical outcome, and so the implanter can safely aim for the low power site without detriment to the analgesic efficacy of the system.


Assuntos
Gânglios Espinais/diagnóstico por imagem , Neuroestimuladores Implantáveis/normas , Manejo da Dor/normas , Dor/diagnóstico por imagem , Estimulação da Medula Espinal/normas , Raízes Nervosas Espinhais/diagnóstico por imagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Manejo da Dor/instrumentação , Estudos Prospectivos , Estudos Retrospectivos , Estimulação da Medula Espinal/instrumentação , Adulto Jovem
11.
Cephalalgia ; 39(9): 1111-1120, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30897941

RESUMO

OBJECTIVE: We present long-term follow-up results and analysis of stimulation sites of a prospective cohort study of six patients with chronic cluster headaches undergoing deep brain stimulation of the ipsilateral posterior hypothalamic region. METHODS: The primary endpoint was the postoperative change in the composite headache severity score "headache load" after 12 months of chronic stimulation. Secondary endpoints were the changes in headache attack frequency, headache attack duration and headache intensity, quality of life measures at 12, 24, and 48 months following surgery. Stimulating contact positions were analysed and projected onto the steroetactic atlas of Schaltenbrand and Wahren. RESULTS: There was a significant reduction of headache load of over 93% on average at 12 months postoperatively that persisted over the follow-up period of 48 months (p = 0.0041) and that was accompanied by a significant increase of reported quality of life measures (p = 0.03). Anatomical analysis revealed that individual stimulating electrodes were located in the red nucleus, posterior hypothalamic region, mesencephalic pretectal area and centromedian nucleus of the thalamus. CONCLUSIONS: Our findings confirming long-term effectiveness of deep brain stimulation for chronic cluster headaches suggest that the neuroanatomical substrate of deep brain stimulation-induced headache relief is probably not restricted to the posterior hypothalamic area but encompasses a more widespread area.


Assuntos
Cefaleia Histamínica/terapia , Estimulação Encefálica Profunda/métodos , Resultado do Tratamento , Adulto , Feminino , Seguimentos , Humanos , Hipotálamo Posterior/fisiologia , Masculino , Pessoa de Meia-Idade , Tempo , Área Tegmentar Ventral/fisiologia
12.
Neuromodulation ; 22(5): 645-652, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30629320

RESUMO

BACKGROUND: Trigeminal Neuropathic Pain (TNP) is a chronic facial pain syndrome caused by a lesion or disease affecting one or more branches of the trigeminal nerve. It may, for example, result from accidental injury to a branch of the trigeminal nerve by trauma or during surgery; it may also be idiopathic. TNP is typically constant, in contrast to most cases of the commoner trigeminal neuralgia. In some cases, pain may be refractory to pharmacological treatment. Peripheral nerve field stimulation is recognized as an effective minimally invasive surgical treatment option for this debilitating condition. To date, stimulation has used conventional tonic waveforms, which generate paraesthesia in the stimulated area. This is the first report of the use of paraesthesia-free burst pattern stimulation for TNP. METHODS: Seven patients were treated at the John Radcliffe Hospital for TNP from 2016 to 2018. Mean duration of preoperative symptoms was five years. All patients had exhausted pharmacological measures to limited effect. The initial three patients had tonic stimulation with the subsequent four having burst stimulation. Outcome was assessed using the numeric pain rating scale preoperatively and postoperatively at three and six months and one year. Side-effects and complications were also assessed as well as reduction in analgesic medication use. RESULTS: All patients achieved pain reduction of at least 50% at 6 months (range 50-100%, mean 81%, p = 0.0082). Those in the burst stimulation group were paraesthesia free. One patient developed a postoperative infection for which the system had to be removed and is awaiting reimplantation. There were no other complications in either group. CONCLUSION: Burst stimulation conferred similar pain control to tonic stimulation in our small cohort, and there were similar reductions in pain medication use. An additional benefit of burst stimulation is freedom from paraesthesia. Larger scale studies are needed to further evaluate burst stimulation and compare its efficacy with that of tonic stimulation.


Assuntos
Terapia por Estimulação Elétrica/métodos , Neuralgia Facial/terapia , Manejo da Dor/métodos , Nervos Periféricos/fisiologia , Estimulação Elétrica Nervosa Transcutânea/métodos , Neuralgia do Trigêmeo/terapia , Adulto , Idoso , Terapia por Estimulação Elétrica/instrumentação , Eletrodos Implantados , Neuralgia Facial/diagnóstico por imagem , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Manejo da Dor/instrumentação , Estimulação Elétrica Nervosa Transcutânea/instrumentação , Resultado do Tratamento , Neuralgia do Trigêmeo/diagnóstico por imagem
13.
Neuromodulation ; 22(5): 638-644, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31199547

RESUMO

BACKGROUND: Occipital nerve stimulation (ONS) is widely used for headache syndromes including chronic migraine (CM) and chronic cluster headache (CCH). The paraesthesia associated with tonic stimulation can be bothersome and can limit therapy. It is now clear in spinal cord stimulation that paraesthesia-free waveforms can produce effective analgesia, but this has not been reported in ONS for CM or CCH. MATERIALS AND METHODS: Seventeen patients (12 CM and 5 CCH) were treated with bilateral burst pattern ONS, including 4 who had previously had tonic ONS. Results were assessed in terms of the frequency of headaches (number of headache days per month for CM, and number of attacks per day for CCH) and their intensity on the numeric pain rating scale. RESULTS: Burst ONS produced a statistically significant mean reduction of 10.2 headache days per month in CM. In CCH, there were significant mean reductions in headache frequency (92%) and intensity (42%). CONCLUSION: Paraesthesia is not necessary for good quality analgesia in ONS. Larger studies will be required to determine whether the efficacies of the two stimulation modes differ. Burst ONS is imperceptible and therefore potentially amenable to robustly blinded clinical trials.


Assuntos
Cefaleia Histamínica/terapia , Terapia por Estimulação Elétrica/métodos , Transtornos de Enxaqueca/terapia , Manejo da Dor/métodos , Nervos Periféricos/fisiologia , Adulto , Idoso , Doença Crônica , Cefaleia Histamínica/diagnóstico , Terapia por Estimulação Elétrica/instrumentação , Eletrodos Implantados , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos de Enxaqueca/diagnóstico , Manejo da Dor/instrumentação , Estudos Retrospectivos
14.
Neuromodulation ; 22(1): 1-35, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30246899

RESUMO

INTRODUCTION: The Neuromodulation Appropriateness Consensus Committee (NACC) is dedicated to improving the safety and efficacy of neuromodulation and thus improving the lives of patients undergoing neuromodulation therapies. With continued innovations in neuromodulation comes the need for evolving reviews of best practices. Dorsal root ganglion (DRG) stimulation has significantly improved the treatment of complex regional pain syndrome (CRPS), among other conditions. Through funding and organizational leadership by the International Neuromodulation Society (INS), the NACC reconvened to develop the best practices consensus document for the selection, implantation and use of DRG stimulation for the treatment of chronic pain syndromes. METHODS: The NACC performed a comprehensive literature search of articles about DRG published from 1995 through June, 2017. A total of 2538 article abstracts were then reviewed, and selected articles graded for strength of evidence based on scoring criteria established by the US Preventive Services Task Force. Graded evidence was considered along with clinical experience to create the best practices consensus and recommendations. RESULTS: The NACC achieved consensus based on peer-reviewed literature and experience to create consensus points to improve patient selection, guide surgical methods, improve post-operative care, and make recommendations for management of patients treated with DRG stimulation. CONCLUSION: The NACC recommendations are intended to improve patient care in the use of this evolving therapy for chronic pain. Clinicians who choose to follow these recommendations may improve outcomes.


Assuntos
Terapia por Estimulação Elétrica/métodos , Gânglios Espinais , Humanos
15.
Neurourol Urodyn ; 37(2): 726-734, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28605052

RESUMO

AIMS: The pedunculopontine nucleus (PPN) is a deep brain stimulation target for Parkinson's disease (PD). Unilateral PPN stimulation has been described in a previous case report to provoke urinary frequency, urgency and detrusor overactivity, due to probable activation of the pontine micturition center. Our aim was to evaluate the effect of bilateral PPN DBS on urodynamic parameters and to investigate the likely mechanisms using probabilistic tractography. METHODS: Six male PD subjects with bilateral PPN deep brain stimulators were recruited. Urodynamic bladder filling assessments were carried out with the stimulators ON and OFF. Two subjects also had diffusion-weighted and T1-weighted MRI scans performed and probabilistic tractography was carried out to describe white matter connections with the stimulated area. RESULTS: Five subjects completed urodynamic testing. PPN DBS did not give rise to detrusor overactivity or lower sensory thresholds during bladder filling. However, there was a significant increase in maximal bladder capacity with stimulation: mean bladder volume at maximal capacity was 199 mL (range 103-440) ON stimulation compared with 131 mL (range 39-230) OFF stimulation. Tractography demonstrated extensive connectivity to cortical and subcortical regions, some of which have been implicated in bladder control. Fiber pathways also passed close to the vicinity of the pontine micturition center. CONCLUSIONS: Bilateral PPN DBS did not have a detrimental effect on urodynamic filling parameters or produce detrusor overactivity, but did slightly increase maximal capacity. Possible mechanisms include long-range connectivity or local effects at the pontine micturition center.


Assuntos
Estimulação Encefálica Profunda , Núcleo Tegmental Pedunculopontino/fisiopatologia , Bexiga Urinária/fisiopatologia , Urodinâmica/fisiologia , Idoso , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/fisiopatologia , Núcleo Tegmental Pedunculopontino/diagnóstico por imagem
16.
Neuromodulation ; 21(3): 225-233, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28960653

RESUMO

OBJECTIVE: Dorsal root ganglion stimulation (DRGS) received its first regulatory approval (CE marking in Europe) in late 2011, and so its use is now almost six years old. Several thousand patients have already been treated, and a landmark trial in lower limb complex regional pain syndrome (CRPS) and causalgia has recently been published. METHODS: In this review we have summarized the literature to date on the use of DRGS in the treatment of neuropathic pain. RESULTS: The results so far are encouraging, with reports of successful use in treating a wide range of indications including postsurgical pain, CRPS, and phantom pain. Treatment of failed back surgery syndrome (FBSS) appears less successful. The therapy is still young, and long term results are not yet available. There is now good randomized clinical trial (RCT) evidence that DRGS provides superior pain relief to spinal cord stimulation for CRPS and causalgia of the lower limb, and produces stimulation that is more posturally stable, with more precise paraesthesia coverage. However evidence of this quality for other indications and pain locations is lacking. CONCLUSION: There is now Class A RCT evidence that DRGS provides superior pain relief to SCS for CRPS and causalgia of the lower limb. In the coming years we hope that randomized controlled trials will be performed on an indication-by-indication basis, which, together with the publication of longer term follow-up data, will provide a more complete understanding of the role of DRGS in the treatment of neuropathic pain syndromes.


Assuntos
Terapia por Estimulação Elétrica/métodos , Gânglios Espinais/fisiologia , Neuralgia/terapia , Manejo da Dor/métodos , Humanos
17.
J Neurosci ; 35(38): 13043-52, 2015 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-26400935

RESUMO

The frontal cortex and basal ganglia form a set of parallel but mostly segregated circuits called cortico-basal ganglia loops. The oculomotor loop controls eye movements and can direct relatively simple movements, such as reflexive prosaccades, without external help but needs input from "higher" loops for more complex behaviors. The antisaccade task requires the dorsolateral prefrontal cortex, which is part of the prefrontal loop. Information flows from prefrontal to oculomotor circuits in the striatum, and directional errors in this task can be considered a measure of failure of prefrontal control over the oculomotor loop. The antisaccadic error rate (AER) is increased in Parkinson's disease (PD). Deep brain stimulation (DBS) of the subthalamic nucleus (STN) has no effect on the AER, but a previous case suggested that DBS of the globus pallidus interna (GPi) might. Our aim was to compare the effects of STN DBS and GPi DBS on the AER. We tested eye movements in 14 human DBS patients and 10 controls. GPi DBS substantially reduced the AER, restoring lost higher control over oculomotor function. Interloop information flow involves striatal neurons that receive cortical input and project to pallidum. They are normally silent when quiescent, but in PD they fire randomly, creating noise that may account for the degradation in interloop control. The reduced AER with GPi DBS could be explained by retrograde stimulation of striatopallidal axons with consequent activation of inhibitory collaterals and reduction in background striatal firing rates. This study may help explain aspects of PD pathophysiology and the mechanism of action of GPi DBS. Significance statement: Parkinson's disease causes symptoms including stiffness, slowness of movement, and tremor. Electrical stimulation of specific areas deep in the brain can effectively treat these symptoms, but exactly how is not fully understood. Part of the cause of such symptoms may be impairments in the way information flows from one circuit within the brain to another, as a result of overactivity of certain nerve cells. By demonstrating that stimulation of an area called the globus pallidus interna partially reverses deficits in voluntary control of eye movements, this study shows that stimulation can improve information flow between circuits, probably by calming down the overactive cells.


Assuntos
Estimulação Encefálica Profunda/métodos , Globo Pálido/fisiologia , Transtornos da Motilidade Ocular/etiologia , Transtornos da Motilidade Ocular/terapia , Doença de Parkinson/complicações , Idoso , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Orientação , Doença de Parkinson/terapia , Estimulação Luminosa , Núcleo Subtalâmico/fisiologia , Resultado do Tratamento
18.
J Neurosci ; 35(15): 5941-9, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25878267

RESUMO

Local field potential (LFP) recordings from patients with deep brain stimulation electrodes in the basal ganglia have suggested that frequency-specific activities correlate with force or effort, but previous studies have not been able to disambiguate the two. Here, we dissociated effort from actual force generated by contrasting the force generation of different fingers while recording LFP activity from the subthalamic nucleus (STN) in patients with Parkinson's disease who had undergone functional surgery. Patients were studied while on their normal dopaminergic medication. We investigated the relationship between frequency-specific oscillatory activity in the STN and voluntary flexion of either the index or little finger at different effort levels. At each tested effort level (10%, 25%, and 40% of the maximal voluntary contraction force of each individual finger), the index finger generated larger force than the little finger. Movement-related suppression of beta-band power in the STN LFP was significantly modulated by effort, but not by which finger was used, suggesting that the beta suppression in the STN LFP during sustained contraction serves as a proxy for effort. The absolute force scaled with beta power suppression, but with the scaling determined by the maximal voluntary contraction force of the motor effector. Our results argue against the hypothesis that the basal ganglia are directly involved in the parameterization of force during movement and support a role of the STN in the control of motor effort to be attributed to a response.


Assuntos
Gânglios da Base/fisiologia , Potenciais Evocados/fisiologia , Transtornos Parkinsonianos/patologia , Núcleo Subtalâmico/fisiopatologia , Adulto , Idoso , Análise de Variância , Estimulação Encefálica Profunda/métodos , Feminino , Dedos/inervação , Lateralidade Funcional , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Transtornos Parkinsonianos/terapia
19.
Curr Opin Neurol ; 29(1): 69-73, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26641812

RESUMO

PURPOSE OF REVIEW: Deep brain stimulation (DBS) is an established treatment for several neurological conditions, and is most commonly used to treat Parkinson's disease by implanting electrodes in the basal ganglia. Despite the fact that circuits involved in eye movement control traverse the basal ganglia and are thus likely to be affected by DBS, studies combining DBS with eye movement analysis have been infrequent. This review focuses on recent research studies that examine the relationship between DBS and various types of eye movements and which highlight the potential of this approach. RECENT FINDINGS: Recent work shows that DBS in the subthalamic nucleus (STN) can improve smooth pursuit in Parkinson's disease. STN DBS has also been shown to modulate visuospatial attention, and has provided experimental evidence backing a Bayesian model of basal ganglia function. DBS in the pallidum can improve antisaccadic performance in Parkinson's disease, suggesting improvement in higher control of oculomotor function, and implying retrograde striatal stimulation as part of the mechanism of action. SUMMARY: These studies show that the combination of DBS with eye movement analysis is a powerful research tool. It may be used to study oculomotor physiology, basal ganglia pathophysiology, and the mechanism of action of DBS.


Assuntos
Gânglios da Base/fisiopatologia , Estimulação Encefálica Profunda , Movimentos Oculares/fisiologia , Doença de Parkinson/fisiopatologia , Núcleo Subtalâmico/fisiopatologia , Globo Pálido/fisiopatologia , Humanos
20.
Br J Neurosurg ; 30(6): 685-686, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27425005

RESUMO

The authors report the first case of successful implantation of a dorsal root ganglion stimulator at L1 and L2 for sustained improvement in chronic pelvic girdle pain.


Assuntos
Terapia por Estimulação Elétrica/métodos , Gânglios Espinais , Dor da Cintura Pélvica/terapia , Adulto , Dor Crônica , Eletrodos Implantados , Feminino , Humanos , Gravidez , Complicações na Gravidez/terapia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa