Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 50(8): 4502-12, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27019216

RESUMO

Hypoxia is a global and increasingly important stressor in aquatic ecosystems, with major impacts on biodiversity worldwide. Hypoxic waters are often contaminated with a wide range of chemicals but little is known about the interactions between these stressors. We investigated the effects of hypoxia on the responses of zebrafish (Danio rerio) embryos to copper, a widespread aquatic contaminant. We showed that during continuous exposures copper toxicity was reduced by over 2-fold under hypoxia compared to normoxia. When exposures were conducted during 24 h windows, hypoxia reduced copper toxicity during early development and increased its toxicity in hatched larvae. To investigate the role of the hypoxia signaling pathway on the suppression of copper toxicity during early development, we stabilized the hypoxia inducible factor (HIF) pathway under normoxia using a prolyl-4-hydroxylase inhibitor, dimethyloxalylglycine (DMOG) and demonstrated that HIF activation results in a strong reduction in copper toxicity. We also established that the reduction in copper toxicity during early development was independent of copper uptake, while after hatching, copper uptake was increased under hypoxia, corresponding to an increase in copper toxicity. These findings change our understanding of the current and future impacts of worldwide oxygen depletion on fish communities challenged by anthropogenic toxicants.


Assuntos
Cobre/toxicidade , Embrião não Mamífero/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Hipóxia/metabolismo , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/metabolismo , Aminoácidos Dicarboxílicos/farmacologia , Animais , Cobre/metabolismo , Embrião não Mamífero/metabolismo , Larva , Oxigênio/metabolismo , Transdução de Sinais , Poluentes Químicos da Água/metabolismo , Peixe-Zebra/embriologia
2.
Environ Toxicol Chem ; 40(4): 989-1006, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33270929

RESUMO

The occurrence of neuroactive chemicals in the aquatic environment is on the rise and poses a potential threat to aquatic biota of currently unpredictable outcome. In particular, subtle changes caused by these chemicals to an organism's sensation or behavior are difficult to tackle with current test systems that focus on rodents or with in vitro test systems that omit whole-animal responses. In recent years, the zebrafish (Danio rerio) has become a popular model organism for toxicological studies and testing strategies, such as the standardized use of zebrafish early life stages in the Organisation for Economic Co-operation and Development's guideline 236. In terms of neurotoxicity, the zebrafish provides a powerful model to investigate changes to the nervous system from several different angles, offering the ability to tackle the mechanisms of action of chemicals in detail. The mechanistic understanding gained through the analysis of this model species provides a good basic knowledge of how neuroactive chemicals might interact with a teleost nervous system. Such information can help infer potential effects occurring to other species exposed to neuroactive chemicals in their aquatic environment and predicting potential risks of a chemical for the aquatic ecosystem. In the present article, we highlight approaches ranging from behavioral to structural, functional, and molecular analysis of the larval zebrafish nervous system, providing a holistic view of potential neurotoxic outcomes. Environ Toxicol Chem 2021;40:989-1006. © 2020 SETAC.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Comportamento Animal , Ecossistema , Larva , Poluentes Químicos da Água/toxicidade
3.
Environ Pollut ; 263(Pt A): 114326, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32247919

RESUMO

Hypoxia is a major stressor in aquatic environments and it is frequently linked with excess nutrients resulting from sewage effluent discharges and agricultural runoff, which often also contain complex mixtures of chemicals. Despite this, interactions between hypoxia and chemical toxicity are poorly understood. We exposed male three-spined stickleback during the onset of sexual maturation to a model anti-androgen (flutamide; 250 µg/L) and a pesticide with anti-androgenic activity (linuron; 250 µg/L), under either 97% or 56% air saturation (AS). We assessed the effects of each chemical, alone and in combination with reduced oxygen concentration, by measuring the transcription of spiggin in the kidney, as a marker of androgen signalling, and 11 genes in the liver involved in some of the molecular pathways hypothesised to be affected by the exposures. Spiggin transcription was strongly inhibited by flutamide under both AS conditions. In contrast, for linuron, a strong inhibition of spiggin was observed under 97% AS, but this effect was supressed under reduced air saturation, likely due to interactions between the hypoxia inducible factor and the aryl hydrocarbon receptor (AhR) pathways. In the liver, hypoxia inducible factor 1α was induced following exposure to both flutamide and linuron, however this was independent of the level of air saturation. This work illustrates the potential for interactions between hypoxia and pollutants with endocrine or AhR agonist activity to occur, with implications for risk assessment and management.


Assuntos
Smegmamorpha , Poluentes Químicos da Água , Animais , Flutamida , Hipóxia , Linurona , Masculino
4.
Sci Rep ; 9(1): 13647, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31541136

RESUMO

The analysis of larval zebrafish locomotor behavior has emerged as a powerful indicator of perturbations in the nervous system and is used in many fields of research, including neuroscience, toxicology and drug discovery. The behavior of larval zebrafish however, is highly variable, resulting in the use of large numbers of animals and the inability to detect small effects. In this study, we analyzed whether individual locomotor behavior is stable over development and whether behavioral parameters correlate with physiological and morphological features, with the aim of better understanding the variability and predictability of larval locomotor behavior. Our results reveal that locomotor activity of an individual larva remains consistent throughout a given day and is predictable throughout larval development, especially during dark phases, under which larvae demonstrate light-searching behaviors and increased activity. The larvae's response to startle-stimuli was found to be unpredictable, with no correlation found between response strength and locomotor activity. Furthermore, locomotor activity was not associated with physiological or morphological features of a larva (resting heart rate, body length, size of the swim bladder). Overall, our findings highlight the areas of intra-individual consistency, which could be used to improve the sensitivity of assays using zebrafish locomotor activity as an endpoint.


Assuntos
Locomoção , Peixe-Zebra/crescimento & desenvolvimento , Aclimatação , Animais , Comportamento Animal/fisiologia , Frequência Cardíaca/efeitos da radiação , Larva/crescimento & desenvolvimento , Larva/fisiologia , Larva/efeitos da radiação , Luz , Estimulação Luminosa , Peixe-Zebra/fisiologia
5.
Aquat Toxicol ; 217: 105325, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31711009

RESUMO

Hypoxia is one of the major threats to biodiversity in aquatic systems. The association of hypoxia with nutrient-rich effluent input into aquatic systems results in scenarios where hypoxic waters could be contaminated with a wide range of chemicals, including metals. Despite this, little is known about the ability of fish to respond to hypoxia when exposures occur in the presence of environmental toxicants. We address this knowledge gap by investigating the effects of exposures to different levels of oxygen in the presence or absence of copper using the three-spined sticklebacks (Gasterosteus aculeatus) model. Fish were exposed to different air saturations (AS; 100%, 75% and 50%) in combination with copper (20 µg/L) over a 4 day period. The critical oxygen level (Pcrit), an indicator of acute hypoxia tolerance, was 54.64 ± 2.51% AS under control conditions, and 36.21 ± 2.14% when fish were chronically exposed to hypoxia (50% AS) for 4 days, revealing the ability of fish to acclimate to low oxygen conditions. Importantly, the additional exposure to copper (20 µg/L) prevented this improvement in Pcrit, impairing hypoxia acclimation. In addition, an increase in ventilation rate was observed for combined copper and hypoxia exposure, compared to the single stressors or the controls. Interestingly, in the groups exposed to copper, a large increase in variation in the measured Pcrit was observed between individuals, both under normoxic and hypoxic conditions. This variation, if observed in wild populations, may lead to selection for a tolerant phenotype and alterations in the gene pool of the populations, with consequences for their sustainability. Our findings provide strong evidence that copper reduces the capacity of fish to respond to hypoxia by preventing acclimation and will inform predictions of the consequences of global increases of hypoxia in water systems affected by other pollutants worldwide.


Assuntos
Aclimatação/efeitos dos fármacos , Cobre/toxicidade , Exposição Ambiental , Hipóxia/fisiopatologia , Smegmamorpha/fisiologia , Animais , Comportamento Animal/efeitos dos fármacos , Biomarcadores/metabolismo , Cobre/metabolismo , Hematócrito , Hemoglobinas/metabolismo , Modelos Animais , Oxigênio , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Água/química , Poluentes Químicos da Água/toxicidade
6.
Environ Int ; 133(Pt A): 105138, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31645010

RESUMO

BACKGROUND: Reactive oxygen species (ROS) arise as a result from, and are essential in, numerous cellular processes. ROS, however, are highly reactive and if left unneutralised by endogenous antioxidant systems, can result in extensive cellular damage and/or pathogenesis. In addition, exposure to a wide range of environmental stressors can also result in surplus ROS production leading to oxidative stress (OS) and downstream tissue toxicity. OBJECTIVES: Our aim was to produce a stable transgenic zebrafish line, unrestricted by tissue-specific gene regulation, which was capable of providing a whole organismal, real-time read-out of tissue-specific OS following exposure to a wide range of OS-inducing environmental contaminants and conditions. This model could, therefore, serve as a sensitive and specific mechanistic in vivo biomarker for all environmental conditions that result in OS. METHODS: To achieve this aim, we exploited the pivotal role of the electrophile response element (EpRE) as a globally-acting master regulator of the cellular response to OS. To test tissue specificity and quantitative capacity, we selected a range of chemical contaminants known to induce OS in specific organs or tissues, and assessed dose-responsiveness in each using microscopic measures of mCherry fluorescence intensity. RESULTS: We produced the first stable transgenic zebrafish line Tg (3EpRE:hsp70:mCherry) with high sensitivity for the detection of cellular RedOx imbalances, in vivo in near-real time. We applied this new model to quantify OS after exposure to a range of environmental conditions with high resolution and provided quantification both of compound- and tissue-specific ROS-induced toxicity. DISCUSSION: Our model has an extremely diverse range of potential applications not only for biomonitoring of toxicants in aqueous environments, but also in biomedicine for identifying ROS-mediated mechanisms involved in the progression of a number of important human diseases, including cancer.


Assuntos
Elementos de Resposta Antioxidante/fisiologia , Técnicas Biossensoriais , Estresse Oxidativo/fisiologia , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Elementos de Resposta Antioxidante/genética , Antioxidantes , Biomarcadores , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Espécies Reativas de Oxigênio , Poluentes Químicos da Água/química , Peixe-Zebra/genética
7.
Environ Pollut ; 222: 433-443, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28017364

RESUMO

Hypoxia is a global problem in aquatic systems and often co-occurs with pollutants. Despite this, little is known about the combined effects of these stressors on aquatic organisms. The objective of this study was to investigate the combined effects of hypoxia and copper, a toxic metal widespread in the aquatic environment. We used the three-spined stickleback (Gasterosteus aculeatus) as a model because of its environmental relevance and amenability for environmental toxicology studies. We focused on embryonic development as this is considered to be a sensitive life stage to environmental pollution. We first investigated the effects of hypoxia alone on stickleback development to generate the information required to design subsequent studies. Our data showed that exposure to low oxygen concentrations (24.7 ± 0.9% air saturation; AS) resulted in strong developmental delays and increased mortalities, whereas a small decrease in oxygen (75.0 ± 0.5%AS) resulted in premature hatching. Stickleback embryos were then exposed to a range of copper concentrations under hypoxia (56.1 ± 0.2%AS) or normoxia (97.6 ± 0.1%AS), continuously, from fertilisation to free swimming larvae. Hypoxia caused significant changes in copper toxicity throughout embryonic development. Prior to hatching, hypoxia suppressed the occurrence of mortalities, but after hatching hypoxia significantly increased copper toxicity. Interestingly, when exposures were conducted only after hatching, the onset of copper-induced mortalities was delayed under hypoxia compared to normoxia, but after 48 h, copper was more toxic to hatched embryos under hypoxia. This is the second species for which the protective effect of hypoxia on copper toxicity prior to hatching, followed by its exacerbating effect after hatching is demonstrated, suggesting the hypothesis that this pattern may be common for teleost species. Our research highlights the importance of considering the interactions between multiple stressors, as understanding these interactions is essential to facilitate the accurate prediction of the consequences of exposure to complex stressors in a rapidly changing environment.


Assuntos
Cobre/toxicidade , Desenvolvimento Embrionário/efeitos dos fármacos , Hipóxia/fisiopatologia , Smegmamorpha/embriologia , Animais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa