Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 312
Filtrar
1.
Annu Rev Immunol ; 35: 177-198, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28125358

RESUMO

The discovery of long noncoding RNAs (lncRNA) has provided a new perspective on gene regulation in diverse biological contexts. lncRNAs are remarkably versatile molecules that interact with RNA, DNA, or proteins to promote or restrain the expression of protein-coding genes. Activation of immune cells is associated with dynamic changes in expression of genes, the products of which combat infectious microorganisms, initiate repair, and resolve inflammatory responses in cells and tissues. Recent evidence indicates that lncRNAs play important roles in directing the development of diverse immune cells and controlling the dynamic transcriptional programs that are a hallmark of immune cell activation. The importance of these molecules is underscored by their newly recognized roles in inflammatory diseases. In this review, we discuss the contribution of lncRNAs in the development and activation of immune cells and their roles in immune-related diseases. We also discuss challenges faced in identifying biological functions for this large and complex class of genes.


Assuntos
Doenças do Sistema Imunitário/genética , Imunidade/genética , RNA Longo não Codificante/imunologia , Animais , Regulação da Expressão Gênica , Humanos
2.
Nat Rev Mol Cell Biol ; 24(6): 430-447, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36596869

RESUMO

Genes specifying long non-coding RNAs (lncRNAs) occupy a large fraction of the genomes of complex organisms. The term 'lncRNAs' encompasses RNA polymerase I (Pol I), Pol II and Pol III transcribed RNAs, and RNAs from processed introns. The various functions of lncRNAs and their many isoforms and interleaved relationships with other genes make lncRNA classification and annotation difficult. Most lncRNAs evolve more rapidly than protein-coding sequences, are cell type specific and regulate many aspects of cell differentiation and development and other physiological processes. Many lncRNAs associate with chromatin-modifying complexes, are transcribed from enhancers and nucleate phase separation of nuclear condensates and domains, indicating an intimate link between lncRNA expression and the spatial control of gene expression during development. lncRNAs also have important roles in the cytoplasm and beyond, including in the regulation of translation, metabolism and signalling. lncRNAs often have a modular structure and are rich in repeats, which are increasingly being shown to be relevant to their function. In this Consensus Statement, we address the definition and nomenclature of lncRNAs and their conservation, expression, phenotypic visibility, structure and functions. We also discuss research challenges and provide recommendations to advance the understanding of the roles of lncRNAs in development, cell biology and disease.


Assuntos
RNA Longo não Codificante , RNA Longo não Codificante/genética , Núcleo Celular/genética , Cromatina/genética , Sequências Reguladoras de Ácido Nucleico , RNA Polimerase II/genética
3.
Cell ; 180(6): 1044-1066, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32164908

RESUMO

The study of innate immunity and its link to inflammation and host defense encompasses diverse areas of biology, ranging from genetics and biophysics to signal transduction and physiology. Central to our understanding of these events are the Toll-like receptors (TLRs), an evolutionarily ancient family of pattern recognition receptors. Herein, we describe the mechanisms and consequences of TLR-mediated signal transduction with a focus on themes identified in the TLR pathways that also explain the operation of other immune signaling pathways. These themes include the detection of conserved microbial structures to identify infectious agents and the use of supramolecular organizing centers (SMOCs) as signaling organelles that ensure digital cellular responses. Further themes include mechanisms of inducible gene expression, the coordination of gene regulation and metabolism, and the influence of these activities on adaptive immunity. Studies in these areas have informed the development of next-generation therapeutics, thus ensuring a bright future for research in this area.


Assuntos
Imunidade Inata/imunologia , Receptores Toll-Like/imunologia , Receptores Toll-Like/metabolismo , Imunidade Adaptativa/imunologia , Animais , Humanos , Imunidade Inata/fisiologia , Inflamação/imunologia , Organelas/metabolismo , Transdução de Sinais/imunologia
4.
Immunity ; 55(8): 1340-1342, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35947978

RESUMO

During infection, pore-forming proteins rapidly initiate cell lysis, but specialized processes like epithelial extrusion need additional time to occur in parallel. In a recent issue of Nature, Nozaki et al. (2022) report that caspase-7 promotes acid shingomyelinase (ASM)-mediated membrane repair of gasdermin and perforin pores to delay cell death.


Assuntos
Caspase 7 , Membrana Celular/metabolismo , Perforina/metabolismo , Proteínas Citotóxicas Formadoras de Poros
5.
Cell ; 165(4): 792-800, 2016 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-27153493

RESUMO

Canonical activation of the inflammasome is critical to promote caspase-1-dependent maturation of the proinflammatory cytokines IL-1ß and IL-18, as well as to induce pyroptotic cell death in response to pathogens and endogenous danger signals. Recent discoveries, however, are beginning to unveil new components of the inflammasome machinery as well as the full spectrum of inflammasome functions, extending their influence beyond canonical functions to regulation of eicosanoid storm, autophagy, and metabolism. In addition, the receptor components of the inflammasome can also regulate diverse biological processes, such as cellular proliferation, gene transcription, and tumorigenesis, all of which are independent of their inflammasome complex-forming capabilities. Here, we review these recent advances that are shaping our understanding of the complex biology of the inflammasome and its constituents.


Assuntos
Inflamassomos/fisiologia , Transdução de Sinais , Animais , Morte Celular , Humanos , Inflamassomos/imunologia , Inflamação/imunologia , Inflamação/metabolismo
6.
Cell ; 165(7): 1672-1685, 2016 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-27315481

RESUMO

Long intergenic noncoding RNAs (lincRNAs) are important regulators of gene expression. Although lincRNAs are expressed in immune cells, their functions in immunity are largely unexplored. Here, we identify an immunoregulatory lincRNA, lincRNA-EPS, that is precisely regulated in macrophages to control the expression of immune response genes (IRGs). Transcriptome analysis of macrophages from lincRNA-EPS-deficient mice, combined with gain-of-function and rescue experiments, revealed a specific role for this lincRNA in restraining IRG expression. Consistently, lincRNA-EPS-deficient mice manifest enhanced inflammation and lethality following endotoxin challenge in vivo. lincRNA-EPS localizes at regulatory regions of IRGs to control nucleosome positioning and repress transcription. Further, lincRNA-EPS mediates these effects by interacting with heterogeneous nuclear ribonucleoprotein L via a CANACA motif located in its 3' end. Together, these findings identify lincRNA-EPS as a repressor of inflammatory responses, highlighting the importance of lincRNAs in the immune system.


Assuntos
Regulação da Expressão Gênica , Inflamação/genética , Macrófagos/imunologia , RNA Longo não Codificante/metabolismo , Animais , Cromátides/metabolismo , Deleção de Genes , Humanos , Listeria monocytogenes/fisiologia , Listeriose/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Macrófagos/virologia , Camundongos , Camundongos Endogâmicos C57BL , RNA Longo não Codificante/genética , Infecções por Respirovirus/imunologia , Vírus Sendai/fisiologia , Receptores Toll-Like/metabolismo , Transcriptoma
7.
Mol Cell ; 83(19): 3402-3403, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37802022

RESUMO

Induction of type I interferon by the STING pathway is a cornerstone of innate immunity. STING also turns on non-canonical autophagy and inflammasome activation although the underlying mechanisms remain ill defined. Liu et al.1 discovered that STING forms a channel that directs proton efflux from the Golgi to drive these responses.


Assuntos
Interferon Tipo I , Proteínas de Membrana , Proteínas de Membrana/metabolismo , Prótons , Imunidade Inata , Inflamassomos , Nucleotidiltransferases
8.
Immunity ; 54(6): 1137-1153.e8, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34051146

RESUMO

Alterations in the cGAS-STING DNA-sensing pathway affect intestinal homeostasis. We sought to delineate the functional role of STING in intestinal inflammation. Increased STING expression was a feature of intestinal inflammation in mice with colitis and in humans afflicted with inflammatory bowel disease. Mice bearing an allele rendering STING constitutively active exhibited spontaneous colitis and dysbiosis, as well as progressive chronic intestinal inflammation and fibrosis. Bone marrow chimera experiments revealed STING accumulation in intestinal macrophages and monocytes as the initial driver of inflammation. Depletion of Gram-negative bacteria prevented STING accumulation in these cells and alleviated intestinal inflammation. STING accumulation occurred at the protein rather than transcript level, suggesting post-translational stabilization. We found that STING was ubiquitinated in myeloid cells, and this K63-linked ubiquitination could be elicited by bacterial products, including cyclic di-GMP. Our findings suggest a positive feedback loop wherein dysbiosis foments the accumulation of STING in intestinal myeloid cells, driving intestinal inflammation.


Assuntos
Colite/imunologia , Disbiose/imunologia , Imunidade Inata/imunologia , Proteínas de Membrana/imunologia , Células Mieloides/imunologia , Ubiquitinação/imunologia , Animais , Estudos de Casos e Controles , Feminino , Humanos , Inflamação/imunologia , Intestinos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/imunologia
10.
Cell ; 156(6): 1193-1206, 2014 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-24630722

RESUMO

Inflammasomes elicit host defense inside cells by activating caspase-1 for cytokine maturation and cell death. AIM2 and NLRP3 are representative sensor proteins in two major families of inflammasomes. The adaptor protein ASC bridges the sensor proteins and caspase-1 to form ternary inflammasome complexes, achieved through pyrin domain (PYD) interactions between sensors and ASC and through caspase activation and recruitment domain (CARD) interactions between ASC and caspase-1. We found that PYD and CARD both form filaments. Activated AIM2 and NLRP3 nucleate PYD filaments of ASC, which, in turn, cluster the CARD of ASC. ASC thus nucleates CARD filaments of caspase-1, leading to proximity-induced activation. Endogenous NLRP3 inflammasome is also filamentous. The cryoelectron microscopy structure of ASC(PYD) filament at near-atomic resolution provides a template for homo- and hetero-PYD/PYD associations, as confirmed by structure-guided mutagenesis. We propose that ASC-dependent inflammasomes in both families share a unified assembly mechanism that involves two successive steps of nucleation-induced polymerization. PAPERFLICK:


Assuntos
Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/metabolismo , Inflamassomos/química , Sequência de Aminoácidos , Proteínas Adaptadoras de Sinalização CARD , Proteínas de Transporte/metabolismo , Microscopia Crioeletrônica , Proteínas de Ligação a DNA , Humanos , Inflamassomos/metabolismo , Inflamassomos/ultraestrutura , Interleucina-1beta/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteínas Nucleares/metabolismo , Polimerização , Estrutura Terciária de Proteína
11.
Nat Immunol ; 17(8): 922-9, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27270400

RESUMO

Deficiency in mevalonate kinase (MVK) causes systemic inflammation. However, the molecular mechanisms linking the mevalonate pathway to inflammation remain obscure. Geranylgeranyl pyrophosphate, a non-sterol intermediate of the mevalonate pathway, is the substrate for protein geranylgeranylation, a protein post-translational modification that is catalyzed by protein geranylgeranyl transferase I (GGTase I). Pyrin is an innate immune sensor that forms an active inflammasome in response to bacterial toxins. Mutations in MEFV (encoding human PYRIN) result in autoinflammatory familial Mediterranean fever syndrome. We found that protein geranylgeranylation enabled Toll-like receptor (TLR)-induced activation of phosphatidylinositol-3-OH kinase (PI(3)K) by promoting the interaction between the small GTPase Kras and the PI(3)K catalytic subunit p110δ. Macrophages that were deficient in GGTase I or p110δ exhibited constitutive release of interleukin 1ß that was dependent on MEFV but independent of the NLRP3, AIM2 and NLRC4 inflammasomes. In the absence of protein geranylgeranylation, compromised PI(3)K activity allows an unchecked TLR-induced inflammatory responses and constitutive activation of the Pyrin inflammasome.


Assuntos
Alquil e Aril Transferases/metabolismo , Febre Familiar do Mediterrâneo/metabolismo , Inflamassomos/metabolismo , Macrófagos/fisiologia , Mutação/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Pirina/genética , Alquil e Aril Transferases/genética , Animais , Células Cultivadas , Febre Familiar do Mediterrâneo/genética , Humanos , Imunidade Inata , Interleucina-1beta/metabolismo , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfatos de Poli-Isoprenil/metabolismo , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Receptores Toll-Like/metabolismo
12.
Nat Immunol ; 17(5): 514-522, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27043414

RESUMO

Cytosolic DNA-mediated activation of the transcription factor IRF3 is a key event in host antiviral responses. Here we found that infection with DNA viruses induced interaction of the metabolic checkpoint kinase mTOR downstream effector and kinase S6K1 and the signaling adaptor STING in a manner dependent on the DNA sensor cGAS. We further demonstrated that the kinase domain, but not the kinase function, of S6K1 was required for the S6K1-STING interaction and that the TBK1 critically promoted this process. The formation of a tripartite S6K1-STING-TBK1 complex was necessary for the activation of IRF3, and disruption of this signaling axis impaired the early-phase expression of IRF3 target genes and the induction of T cell responses and mucosal antiviral immunity. Thus, our results have uncovered a fundamental regulatory mechanism for the activation of IRF3 in the cytosolic DNA pathway.


Assuntos
DNA/imunologia , Fator Regulador 3 de Interferon/imunologia , Proteínas de Membrana/imunologia , Proteínas Quinases S6 Ribossômicas 90-kDa/imunologia , Adenoviridae/genética , Adenoviridae/imunologia , Animais , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Células Cultivadas , Citosol/imunologia , Citosol/metabolismo , Citosol/virologia , DNA/genética , DNA/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células HEK293 , Herpes Simples/imunologia , Herpes Simples/virologia , Herpesvirus Humano 1/imunologia , Herpesvirus Humano 1/fisiologia , Humanos , Imunização/métodos , Immunoblotting , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nucleotidiltransferases/genética , Nucleotidiltransferases/imunologia , Nucleotidiltransferases/metabolismo , Ovalbumina/genética , Ovalbumina/imunologia , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo
13.
Immunity ; 50(6): 1412-1424.e6, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31076360

RESUMO

Assembly of inflammasomes after infection or injury leads to the release of interleukin-1ß (IL-1ß) and to pyroptosis. After inflammasome activation, cells either pyroptose or enter a hyperactivated state defined by IL-1ß secretion without cell death, but what controls these different outcomes is unknown. Here, we show that removal of the Toll-IL-1R protein SARM from macrophages uncouples inflammasome-dependent cytokine release and pyroptosis, whereby cells displayed increased IL-1ß production but reduced pyroptosis. Correspondingly, increasing SARM in cells caused less IL-1ß release and more pyroptosis. SARM suppressed IL-1ß by directly restraining the NLRP3 inflammasome and, hence, caspase-1 activation. Consistent with a role for SARM in pyroptosis, Sarm1-/- mice were protected from lipopolysaccharide (LPS)-stimulated sepsis. Pyroptosis-inducing, but not hyperactivating, NLRP3 stimulants caused SARM-dependent mitochondrial depolarization. Thus, SARM-dependent mitochondrial depolarization distinguishes NLRP3 activators that cause pyroptosis from those that do not, and SARM modulation represents a cell-intrinsic mechanism to regulate cell fate after inflammasome activation.


Assuntos
Proteínas do Domínio Armadillo/metabolismo , Citocinas/metabolismo , Proteínas do Citoesqueleto/metabolismo , Inflamassomos/metabolismo , Animais , Proteínas do Domínio Armadillo/genética , Biomarcadores , Sobrevivência Celular , Proteínas do Citoesqueleto/genética , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ligação Proteica , Piroptose , Transdução de Sinais
14.
Trends Immunol ; 45(2): 127-137, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38220553

RESUMO

Long noncoding RNAs (lncRNAs) play important roles in numerous biological processes, including the immune system. Initial research in this area focused on cell-based studies, but recent advances underscore the profound significance of lncRNAs at the organismal level, providing invaluable insights into their roles in inflammatory diseases. In this rapidly evolving field, lncRNAs have been described with pivotal roles in the intestinal tract where they regulate intestinal homeostasis and inflammation by influencing processes such as immune cell development, inflammatory signaling pathways, epithelial barrier function, and cellular metabolism. Understanding the regulation and function of lncRNAs in this tissue may position lncRNAs not only as potential disease biomarkers but also as promising targets for therapeutic intervention in inflammatory bowel disease and related diseases.


Assuntos
Doenças Inflamatórias Intestinais , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Intestinos , Inflamação , Doenças Inflamatórias Intestinais/genética , Homeostase
15.
Immunity ; 49(3): 413-426.e5, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30170814

RESUMO

Inflammasome-activated caspase-1 cleaves gasdermin D to unmask its pore-forming activity, the predominant consequence of which is pyroptosis. Here, we report an additional biological role for gasdermin D in limiting cytosolic DNA surveillance. Cytosolic DNA is sensed by Aim2 and cyclic GMP-AMP synthase (cGAS) leading to inflammasome and type I interferon responses, respectively. We found that gasdermin D activated by the Aim2 inflammasome suppressed cGAS-driven type I interferon response to cytosolic DNA and Francisella novicida in macrophages. Similarly, interferon-ß (IFN-ß) response to F. novicida infection was elevated in gasdermin D-deficient mice. Gasdermin D-mediated negative regulation of IFN-ß occurred in a pyroptosis-, interleukin-1 (IL-1)-, and IL-18-independent manner. Mechanistically, gasdermin D depleted intracellular potassium (K+) via membrane pores, and this K+ efflux was necessary and sufficient to inhibit cGAS-dependent IFN-ß response. Thus, our findings have uncovered an additional interferon regulatory module involving gasdermin D and K+ efflux.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Francisella/fisiologia , Infecções por Bactérias Gram-Negativas/imunologia , Inflamassomos/metabolismo , Animais , Apoptose , Proteínas Reguladoras de Apoptose/genética , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Células HEK293 , Humanos , Interferon Tipo I/metabolismo , Interleucina-1/metabolismo , Interleucina-18/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Knockout , Proteínas de Ligação a Fosfato , Potássio/metabolismo , RNA Interferente Pequeno/genética
16.
Cell ; 150(3): 606-19, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-22819539

RESUMO

Systemic infections with Gram-negative bacteria are characterized by high mortality rates due to the "sepsis syndrome," a widespread and uncontrolled inflammatory response. Though it is well recognized that the immune response during Gram-negative bacterial infection is initiated after the recognition of endotoxin by Toll-like receptor 4, the molecular mechanisms underlying the detrimental inflammatory response during Gram-negative bacteremia remain poorly defined. Here, we identify a TRIF pathway that licenses NLRP3 inflammasome activation by all Gram-negative bacteria. By engaging TRIF, Gram-negative bacteria activate caspase-11. TRIF activates caspase-11 via type I IFN signaling, an event that is both necessary and sufficient for caspase-11 induction and autoactivation. Caspase-11 subsequently synergizes with the assembled NLRP3 inflammasome to regulate caspase-1 activation and leads to caspase-1-independent cell death. These events occur specifically during infection with Gram-negative, but not Gram-positive, bacteria. The identification of TRIF as a regulator of caspase-11 underscores the importance of TLRs as master regulators of inflammasomes during Gram-negative bacterial infection.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Caspases/metabolismo , Citrobacter rodentium/metabolismo , Escherichia coli Êntero-Hemorrágica/metabolismo , Inflamassomos/metabolismo , Interferons/metabolismo , Animais , Proteínas de Transporte/metabolismo , Caspases Iniciadoras , Citrobacter rodentium/imunologia , Escherichia coli Êntero-Hemorrágica/imunologia , Bactérias Gram-Negativas/imunologia , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Positivas/imunologia , Bactérias Gram-Positivas/metabolismo , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Transdução de Sinais
17.
Mol Cell ; 76(1): 8-10, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31585104

RESUMO

In a recently published article in Science, Cao and colleagues (Wang et al., 2019) identify hnRNPA2B1 as a new DNA-binding protein that initiates and amplifies antiviral immunity, unveiling a new facet of DNA recognition in the nucleus.


Assuntos
Antivirais , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B , Núcleo Celular , Vírus de DNA , Imunidade Inata
18.
Trends Immunol ; 44(3): 156-158, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36740513

RESUMO

Resistance mechanisms have curbed the potential of immune checkpoint blockade (ICB) therapies. Understanding mechanisms that contribute to this resistance should reveal new targets for combinatorial therapy. Tank-binding kinase 1 (TBK1) represents such a target. In recent work by Sun et al., inhibition of TBK1 restored the efficacy of such treatments by sensitizing tumors to RIPK1 kinase-dependent inflammatory cell death.


Assuntos
Neoplasias , Humanos , Morte Celular , Imunoterapia , Proteína Serina-Treonina Quinases de Interação com Receptores , Proteínas Serina-Treonina Quinases
19.
Immunity ; 47(4): 616-617, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-29045895

RESUMO

Maintenance of genome integrity is essential to prevent cancer. Genotoxic stress drives damaged DNA out of the nucleus by forming micronuclei. Two studies in Nature reveal how the cytosolic DNA sensor cGAS gains access to the cargo within micronuclei to drive type I IFN responses.


Assuntos
Dano ao DNA , Nucleotidiltransferases/genética , Núcleo Celular , Citosol , DNA
20.
Proc Natl Acad Sci U S A ; 120(5): e2213777120, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36693106

RESUMO

The accrual of cytosolic DNA leads to transcription of type I IFNs, proteolytic maturation of the IL-1 family of cytokines, and pyroptotic cell death. Caspase-1 cleaves pro-IL1ß to generate mature bioactive cytokine and gasdermin D which facilitates IL-1 release and pyroptotic cell death. Absent in melanoma-2 (AIM2) is a sensor of dsDNA leading to caspase-1 activation, although in human monocytes, cGAS-STING acting upstream of NLRP3 mediates the dsDNA-activated inflammasome response. In healthy human keratinocytes, AIM2 is not expressed yet caspase-1 is activated by the synthetic dsDNA mimetic poly(dA:dT). Here, we show that this response is not mediated by either AIM2 or the cGAS-STING-NLRP3 pathway and is instead dependent on NLRP1. Poly(dA:dT) is unique in its ability to activate NLRP1, as conventional linear dsDNAs fail to elicit NLRP1 activation. DsRNA was recently shown to activate NLRP1 and prior work has shown that poly(dA:dT) is transcribed into an RNA intermediate that stimulates the RNA sensor RIG-I. However, poly(dA:dT)-dependent RNA intermediates are insufficient to activate NLRP1. Instead, poly(dA:dT) results in oxidative nucleic acid damage and cellular stress, events which activate MAP3 kinases including ZAKα that converge on p38 to activate NLRP1. Collectively, this work defines a new activator of NLRP1, broadening our understanding of sensors that recognize poly(dA:dT) and advances the understanding of the immunostimulatory potential of this potent adjuvant.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Citocinas/metabolismo , DNA/metabolismo , Caspase 1/metabolismo , RNA/metabolismo , Queratinócitos/metabolismo , Interleucina-1/metabolismo , Proteínas NLR/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa