Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biofouling ; 33(6): 505-519, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28604167

RESUMO

An Alteromonas macleodii strain was isolated from copper-containing coupons incubated in surface seawater (Key West, FL, USA). In addition to the original isolate, a copper-adapted mutant was created and maintained with 0.78 mM Cu2+. Biofilm formation was compared between the two strains under copper-amended and low-nutrient conditions. Biofilm formation was significantly increased in the original isolate under copper amendment, while biofilm formation was significantly higher in the mutant under low-nutrient conditions. Biofilm expression profiles of diguanylate cyclase (DGC) genes, as well as genes involved in secretion, differed between the strains. Comparative genomic analysis demonstrated that both strains possessed a large number of gene attachment harboring cyclic di-GMP synthesis and/or degradation domains. One of the DGC genes, induced at very high levels in the mutant, possessed a degradation domain in the original isolate that was lacking in the mutant. The genetic and transcriptional mechanisms contributing to biofilm formation are discussed.


Assuntos
Alteromonas/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Cobre/farmacologia , Desinfetantes/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Genes Bacterianos , Alteromonas/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Cobre/análise , GMP Cíclico/análogos & derivados , GMP Cíclico/biossíntese , Desinfetantes/análise , Farmacorresistência Bacteriana/genética , Proteínas de Escherichia coli/genética , Modelos Teóricos , Mutação , Fósforo-Oxigênio Liases/genética , Água do Mar/química
2.
Appl Environ Microbiol ; 82(20): 6233-6246, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27520819

RESUMO

The effect of microwave frequency electromagnetic fields on living microorganisms is an active and highly contested area of research. One of the major drawbacks to using mesophilic organisms to study microwave radiation effects is the unavoidable heating of the organism, which has limited the scale (<5 ml) and duration (<1 h) of experiments. However, the negative effects of heating a mesophile can be mitigated by employing thermophiles (organisms able to grow at temperatures of >60°C). This study identified changes in global gene expression profiles during the growth of Thermus scotoductus SA-01 at 65°C using dielectric (2.45 GHz, i.e., microwave) heating. RNA sequencing was performed on cultures at 8, 14, and 24 h after inoculation to determine the molecular mechanisms contributing to long-term cellular growth and survival under microwave heating conditions. Over the course of growth, genes associated with amino acid metabolism, carbohydrate metabolism, and defense mechanisms were upregulated; the number of repressed genes with unknown function increased; and at all time points, transposases were upregulated. Genes involved in cell wall biogenesis and elongation were also upregulated, consistent with the distinct elongated cell morphology observed after 24 h using microwave heating. Analysis of the global differential gene expression data enabled the identification of molecular processes specific to the response of T. scotoductus SA-01 to dielectric heating during growth. IMPORTANCE: The residual heating of living organisms in the microwave region of the electromagnetic spectrum has complicated the identification of radiation-only effects using microorganisms for 50 years. A majority of the previous experiments used either mature cells or short exposure times with low-energy high-frequency radiation. Using global differential gene expression data, we identified molecular processes unique to dielectric heating using Thermus scotoductus SA-01 cultured over 30 h in a commercial microwave digestor. Genes associated with amino acid metabolism, carbohydrate metabolism, and defense mechanisms were upregulated; the number of repressed genes with unknown function increased; and at all time points, transposases were upregulated. These findings serve as a platform for future studies with mesophiles in order to better understand the response of microorganisms to microwave radiation.


Assuntos
Extremófilos/crescimento & desenvolvimento , Extremófilos/efeitos da radiação , Thermus/crescimento & desenvolvimento , Thermus/efeitos da radiação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Extremófilos/genética , Extremófilos/metabolismo , Temperatura Alta , Micro-Ondas , Thermus/genética
3.
Appl Environ Microbiol ; 81(18): 6285-93, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26150459

RESUMO

A thermophile, Thermus scotoductus SA-01, was cultured within a constant-temperature (65°C) microwave (MW) digester to determine if MW-specific effects influenced the growth and physiology of the organism. As a control, T. scotoductus cells were also cultured using convection heating at the same temperature as the MW studies. Cell growth was analyzed by optical density (OD) measurements, and cell morphologies were characterized using electron microscopy imaging (scanning electron microscopy [SEM] and transmission electron microscopy [TEM]), dynamic light scattering (DLS), and atomic force microscopy (AFM). Biophysical properties (i.e., turgor pressure) were also calculated with AFM, and biochemical compositions (i.e., proteins, nucleic acids, fatty acids) were analyzed by attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. Gas chromatography-mass spectrometry (GC-MS) was used to analyze the fatty acid methyl esters extracted from cell membranes. Here we report successful cultivation of a thermophile with only dielectric heating. Under the MW conditions for growth, cell walls remained intact and there were no indications of membrane damage or cell leakage. Results from these studies also demonstrated that T. scotoductus cells grown with MW heating exhibited accelerated growth rates in addition to altered cell morphologies and biochemical compositions compared with oven-grown cells.


Assuntos
Fenômenos Químicos , Redes e Vias Metabólicas , Thermus/crescimento & desenvolvimento , Thermus/efeitos da radiação , Biomassa , Difusão Dinâmica da Luz , Ácidos Graxos/análise , Cromatografia Gasosa-Espectrometria de Massas , Calefação/métodos , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Ácidos Nucleicos/análise , Proteínas/análise , Espectrofotometria , Espectroscopia de Infravermelho com Transformada de Fourier , Thermus/química , Thermus/ultraestrutura
4.
Nano Lett ; 14(11): 6737-42, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25310721

RESUMO

Microbial fuel cells (MFCs) have been the focus of substantial research interest due to their potential for long-term, renewable electrical power generation via the metabolism of a broad spectrum of organic substrates, although the low power densities have limited their applications to date. Here, we demonstrate the potential to improve the power extraction by exploiting biogenic inorganic nanoparticles to facilitate extracellular electron transfer in MFCs. Simultaneous short-circuit current recording and optical imaging on a nanotechnology-enabled platform showed substantial current increase from Shewanella PV-4 after the formation of cell/iron sulfide nanoparticle aggregates. Detailed characterization of the structure and composition of the cell/nanoparticle interface revealed crystalline iron sulfide nanoparticles in intimate contact with and uniformly coating the cell membrane. In addition, studies designed to address the fundamental mechanisms of charge transport in this hybrid system showed that charge transport only occurred in the presence of live Shewanella, and moreover demonstrated that the enhanced current output can be attributed to improved electron transfer at cell/electrode interface and through the cellular-networks. Our approach of interconnecting and electrically contacting bacterial cells through biogenic nanoparticles represents a unique and promising direction in MFC research and has the potential to not only advance our fundamental knowledge about electron transfer processes in these biological systems but also overcome a key limitation in MFCs by constructing an electrically connected, three-dimensional cell network from the bottom-up.


Assuntos
Fontes de Energia Bioelétrica/microbiologia , Compostos de Ferro/química , Nanopartículas/química , Shewanella/metabolismo , Sulfetos/química , Eletricidade , Eletrodos , Transporte de Elétrons , Elétrons , Nanopartículas/ultraestrutura , Nanotecnologia , Shewanella/citologia
5.
Appl Microbiol Biotechnol ; 97(1): 135-42, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22851013

RESUMO

Biogenic gas has a wide range of energy applications from being used as a source for crude bio-oil components to direct ignition for heating. The current study describes the use of biogenic gases from Clostridium acetobutylicum for a new application-renewable ballast regeneration for autonomous underwater devices. Uninterrupted (continuous) and blocked flow (pressurization) experiments were performed to determine the overall biogas composition and total volume generated from a semirigid gelatinous matrix. For stopped flow experiments, C. acetobutylicum generated a maximum pressure of 55 psi over 48 h composed of 60 % hydrogen gas when inoculated in a 5 % agar (w/v) support with 5 % glucose (w/v) in the matrix. Typical pressures over 24 h at 318 K ranged from 10 to 33 psi. These blocked flow experiments show for the first time the use of microbial gas production as a way to repressurize gas cylinders. Continuous flow experiments successfully demonstrated how to deliver biogas to an open ballast control configuration for deployable underwater platforms. This study is a starting point for engineering and microbiology investigations of biogas which will advance the integration of biology within autonomous systems.


Assuntos
Biocombustíveis , Clostridium acetobutylicum/metabolismo , Microbiologia Industrial/métodos , Meios de Cultura/química , Fermentação
6.
Proc Natl Acad Sci U S A ; 107(39): 16806-10, 2010 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-20837546

RESUMO

Microbial fuel cells (MFCs) represent a promising approach for sustainable energy production as they generate electricity directly from metabolism of organic substrates without the need for catalysts. However, the mechanisms of electron transfer between microbes and electrodes, which could ultimately limit power extraction, remain controversial. Here we demonstrate optically transparent nanoelectrodes as a platform to investigate extracellular electron transfer in Shewanella oneidensis MR-1, where an array of nanoholes precludes or single window allows for direct microbe-electrode contacts. Following addition of cells, short-circuit current measurements showed similar amplitude and temporal response for both electrode configurations, while in situ optical imaging demonstrates that the measured currents were uncorrelated with the cell number on the electrodes. High-resolution imaging showed the presence of thin, 4- to 5-nm diameter filaments emanating from cell bodies, although these filaments do not appear correlated with current generation. Both types of electrodes yielded similar currents at longer times in dense cell layers and exhibited a rapid drop in current upon removal of diffusible mediators. Reintroduction of the original cell-free media yielded a rapid increase in current to ∼80% of original level, whereas imaging showed that the positions of > 70% of cells remained unchanged during solution exchange. Together, these measurements show that electron transfer occurs predominantly by mediated mechanism in this model system. Last, simultaneous measurements of current and cell positions showed that cell motility and electron transfer were inversely correlated. The ability to control and image cell/electrode interactions down to the single-cell level provide a powerful approach for advancing our fundamental understanding of MFCs.


Assuntos
Fontes de Energia Bioelétrica , Biocombustíveis , Elétrons , Nanoestruturas , Nanotecnologia/métodos , Shewanella/metabolismo , Transporte de Elétrons , Microeletrodos
7.
Biotechnol Bioeng ; 103(3): 524-31, 2009 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-19189395

RESUMO

Changes in metabolism and cellular physiology of facultative anaerobes during oxygen exposure can be substantial, but little is known about how these changes connect with electrical current output from an operating microbial fuel cell (MFC). A high-throughput voltage based screening assay (VBSA) was used to correlate current output from a MFC containing Shewanella oneidensis MR-1 to carbon source (glucose or lactate) utilization, culture conditions, and biofilm coverage over 250 h. Lactate induced an immediate current response from S. oneidensis MR-1, with both air-exposed and anaerobic anodes throughout the duration of the experiments. Glucose was initially utilized for current output by MR-1 when cultured and maintained in the presence of air. However, after repeated additions of glucose, the current output from the MFC decreased substantially while viable planktonic cell counts and biofilm coverage remained constant suggesting that extracellular electron transfer pathways were being inhibited. Shewanella maintained under an anaerobic atmosphere did not utilize glucose consistent with literature precedents. Operation of the VBSA permitted data collection from nine simultaneous S. oneidensis MR-1 MFC experiments in which each experiment was able to demonstrate organic carbon source utilization and oxygen dependent biofilm formation on a carbon electrode. These data provide the first direct evidence of complex cellular responses to electron donor and oxygen tension by Shewanella in an operating MFC at select time points.


Assuntos
Fontes de Energia Bioelétrica/microbiologia , Biofilmes/crescimento & desenvolvimento , Eletricidade , Shewanella/metabolismo , Aerobiose , Anaerobiose , Glucose/metabolismo , Ácido Láctico/metabolismo , Shewanella/crescimento & desenvolvimento
8.
Virus Genes ; 39(3): 418-26, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19697117

RESUMO

Annotation of the 330-kb Chlorella virus PBCV-1 genome identified a 237 nucleotide gene (a438l) that codes for a protein with approximately 35% amino acid identity to glutaredoxins (Grx) found in other organisms. The PBCV-1 protein resembles classical Grxs in both size (9 kDa) and location of the active site (N-terminus). However, the PBCV-1 Grx is unusual because it contains a monothiol active site (CPYS) rather than the typical dithiol active site (CPYC). To examine this unique active site, four site-specific mutants (CPYC, CPYA, SPYC, and SPYS) were constructed to determine if the N-terminal cysteine is necessary for enzyme activity. Wild type and both mutants containing N-terminal cysteines catalyzed the reduction of disulfides in a coupled system with GSH, NADPH, and glutathione reductase. However, both mutants with an altered N-terminal cysteine were inactive. The grx gene is common in the Chlorella viruses. Molecular phylogenetic analyses of the PBCV-1 enzyme support its relatedness to those from other Chlorella viruses and yet demonstrate the divergence of the Grx molecule.


Assuntos
Chlorella/virologia , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Phycodnaviridae/enzimologia , Phycodnaviridae/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Domínio Catalítico , Glutarredoxinas/química , Dados de Sequência Molecular , Peso Molecular , Mutagênese Sítio-Dirigida , Filogenia , Homologia de Sequência de Aminoácidos , Proteínas Virais/química
9.
J Healthc Eng ; 2017: 5740975, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29317995

RESUMO

Disruption of the blood-brain barrier (BBB) is the hallmark of many neurovascular disorders, making it a critically important focus for therapeutic options. However, testing the effects of either drugs or pathological agents is difficult due to the potentially damaging consequences of altering the normal brain microenvironment. Recently, in vitro coculture tissue models have been developed as an alternative to animal testing. Despite low cost, these platforms use synthetic scaffolds which prevent normal barrier architecture, cellular crosstalk, and tissue remodeling. We created a biodegradable electrospun gelatin mat "biopaper" (BP) as a scaffold material for an endothelial/astrocyte coculture model allowing cell-cell contact and crosstalk. To compare the BP and traditional models, we investigated the expression of 27 genes involved in BBB permeability, cellular function, and endothelial junctions at different time points. Gene expression levels demonstrated higher expression of transcripts involved in endothelial junction formation, including TJP2 and CDH5, in the BP model. The traditional model had higher expression of genes associated with extracellular matrix-associated proteins, including SPARC and COL4A1. Overall, the results demonstrate that the BP coculture model is more representative of a healthy BBB state, though both models have advantages that may be useful in disease modeling.


Assuntos
Materiais Biocompatíveis , Barreira Hematoencefálica , Expressão Gênica , Modelos Biológicos , Transporte Biológico , Técnicas de Cocultura , Humanos , Permeabilidade
10.
F1000Res ; 6: 1834, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-30109018

RESUMO

Background: Shipwrecks serve as a rich source for novel microbial populations that have largely remained undiscovered. Low temperatures, lack of sunlight, and the availability of substrates derived from the shipwreck's hull and cargo may provide an environment in which microbes can develop unique metabolic adaptations.   Methods: To test our hypothesis that shipwrecks could influence the microbial population involved in denitrification when a consortium is grown in the laboratory, we collected samples proximate to two steel shipwrecks in the northern Gulf of Mexico. Then under laboratory conditions, we grew two independent denitrifying microbial consortia. Each consortium was grown by using the BART assay system and analyzed based on growth kinetics, ion chromatography and 16S amplicon sequencing. Results: Both denitrifying consortia were different from each other based on varied growth profiles, rates of nitrate utilization and 16S amplicon sequencing. Conclusions: Our observations conclude that the laboratory grown water column microbial consortia from deep-sea shipwrecks in the Gulf of Mexico are able to undergo aggressive denitrification.

11.
Virus Res ; 117(1): 119-32, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16516998

RESUMO

The family Phycodnaviridae encompasses a diverse collection of large icosahedral, dsDNA viruses infecting algae. These viruses have genomes ranging from 160 to 560kb. The family consists of six genera based initially on host range and supported by sequence comparisons. The family is monophyletic with branches for each genus, but the phycodnaviruses have evolutionary roots that connect with several other families of large DNA viruses, referred to as the nucleocytoplasmic large DNA viruses (NCLDV). The genomes of members in three genera in the Phycodnaviridae have recently been sequenced and the purpose of this manuscript is to summarize these data. The viruses have diverse genome structures, some with large regions of non-coding sequence and others with regions of single-stranded DNA. Typically, phycodnaviruses have the coding capacity for hundreds of genes. The genome analyses have revealed in excess of 1000 unique genes, with only 14 homologous genes held in common among the three genera of the phycodnavirses sequenced to date. Thus, the gene diversity far exceeds the number of so-called "core" genes. Little is known about the replication of these viruses, but the consequences of these infections of the phytoplankton have global affects, including altered geochemical cycling and weather patterns.


Assuntos
Eucariotos/virologia , Variação Genética , Phycodnaviridae/classificação , Phycodnaviridae/genética , Vírus de DNA/classificação , Vírus de DNA/genética , Evolução Molecular , Genoma Viral
12.
PLoS One ; 10(6): e0131015, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26115538

RESUMO

The phylum Deinococcus-Thermus is a deeply-branching lineage of bacteria widely recognized as one of the most extremophilic. Members of the Thermus genus are of major interest due to both their bioremediation and biotechnology potentials. However, the molecular mechanisms associated with these key metabolic pathways remain unknown. Reverse-transcription quantitative PCR (RT-qPCR) is a high-throughput means of studying the expression of a large suite of genes over time and under different conditions. The selection of a stably-expressed reference gene is critical when using relative quantification methods, as target gene expression is normalized to expression of the reference gene. However, little information exists as to reference gene selection in extremophiles. This study evaluated 11 candidate reference genes for use with the thermophile Thermus scotoductus when grown under different culture conditions. Based on the combined stability values from BestKeeper and NormFinder software packages, the following are the most appropriate reference genes when comparing: (1) aerobic and anaerobic growth: TSC_c19900, polA2, gyrA, gyrB; (2) anaerobic growth with varied electron acceptors: TSC_c19900, infA, pfk, gyrA, gyrB; (3) aerobic growth with different heating methods: gyrA, gap, gyrB; (4) all conditions mentioned above: gap, gyrA, gyrB. The commonly-employed rpoC does not serve as a reliable reference gene in thermophiles, due to its expression instability across all culture conditions tested here. As extremophiles exhibit a tendency for polyploidy, absolute quantification was employed to determine the ratio of transcript to gene copy number in a subset of the genes. A strong negative correlation was found to exist between ratio and threshold cycle (CT) values, demonstrating that CT changes reflect transcript copy number, and not gene copy number, fluctuations. Even with the potential for polyploidy in extremophiles, the results obtained via absolute quantification indicate that relative quantification is appropriate for RT-qPCR studies with this thermophile.


Assuntos
Deinococcus/crescimento & desenvolvimento , Deinococcus/genética , Perfilação da Expressão Gênica/normas , Regulação Bacteriana da Expressão Gênica , Reação em Cadeia da Polimerase Via Transcriptase Reversa/normas , Técnicas Bacteriológicas/métodos , Meios de Cultura/farmacologia , Deinococcus/efeitos dos fármacos , Perfilação da Expressão Gênica/métodos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Genes Bacterianos/efeitos dos fármacos , Genes Essenciais/efeitos dos fármacos , Padrões de Referência , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos
13.
Sci Rep ; 5: 10691, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-26031221

RESUMO

Neurospora crassa has been utilized as a model organism for studying biological, regulatory, and circadian rhythms for over 50 years. These circadian cycles are driven at the molecular level by gene transcription events to prepare for environmental changes. N. crassa is typically found on woody biomass and is commonly studied on agar-containing medium which mimics its natural environment. We report a novel method for disrupting circadian gene transcription while maintaining light responsiveness in N. crassa when held in a steady metabolic state using bioreactors. The arrhythmic transcription of core circadian genes and downstream clock-controlled genes was observed in constant darkness (DD) as determined by reverse transcription-quantitative PCR (RT-qPCR). Nearly all core circadian clock genes were up-regulated upon exposure to light during 11hr light/dark cycle experiments under identical conditions. Our results demonstrate that the natural timing of the robust circadian clock in N. crassa can be disrupted in the dark when maintained in a consistent metabolic state. Thus, these data lead to a path for the production of industrial scale enzymes in the model system, N. crassa, by removing the endogenous negative feedback regulation by the circadian oscillator.


Assuntos
Relógios Circadianos , Luz , Neurospora crassa/fisiologia , Neurospora crassa/efeitos da radiação , Relógios Circadianos/genética , Ritmo Circadiano/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/efeitos da radiação , Fotoperíodo , Transcrição Gênica
14.
PLoS One ; 9(12): e112706, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25474155

RESUMO

Neurospora crassa has served as a model organism for studying circadian pathways and more recently has gained attention in the biofuel industry due to its enhanced capacity for cellulase production. However, in order to optimize N. crassa for biotechnological applications, metabolic pathways during growth under different environmental conditions must be addressed. Reverse-transcription quantitative PCR (RT-qPCR) is a technique that provides a high-throughput platform from which to measure the expression of a large set of genes over time. The selection of a suitable reference gene is critical for gene expression studies using relative quantification, as this strategy is based on normalization of target gene expression to a reference gene whose expression is stable under the experimental conditions. This study evaluated twelve candidate reference genes for use with N. crassa when grown in continuous culture bioreactors under different light and temperature conditions. Based on combined stability values from NormFinder and Best Keeper software packages, the following are the most appropriate reference genes under conditions of: (1) light/dark cycling: btl, asl, and vma1; (2) all-dark growth: btl, tbp, vma1, and vma2; (3) temperature flux: btl, vma1, act, and asl; (4) all conditions combined: vma1, vma2, tbp, and btl. Since N. crassa exists as different cell types (uni- or multi-nucleated), expression changes in a subset of the candidate genes was further assessed using absolute quantification. A strong negative correlation was found to exist between ratio and threshold cycle (CT) values, demonstrating that CT changes serve as a reliable reflection of transcript, and not gene copy number, fluctuations. The results of this study identified genes that are appropriate for use as reference genes in RT-qPCR studies with N. crassa and demonstrated that even with the presence of different cell types, relative quantification is an acceptable method for measuring gene expression changes during growth in bioreactors.


Assuntos
Proteínas Fúngicas/biossíntese , Interação Gene-Ambiente , Redes e Vias Metabólicas/genética , Neurospora crassa/genética , Bases de Dados Genéticas , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Neurospora crassa/crescimento & desenvolvimento , Software
15.
Nat Commun ; 4: 2751, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24202068

RESUMO

Microbial fuel cells, in which living microorganisms convert chemical energy into electricity, represent a potentially sustainable energy technology for the future. Here we report the single-bacterium level current measurements of Geobacter sulfurreducens DL-1 to elucidate the fundamental limits and factors determining maximum power output from a microbial fuel cell. Quantized stepwise current outputs of 92(±33) and 196(±20) fA are generated from microelectrode arrays confined in isolated wells. Simultaneous cell imaging/tracking and current recording reveals that the current steps are directly correlated with the contact of one or two cells with the electrodes. This work establishes the amount of current generated by an individual Geobacter cell in the absence of a biofilm and highlights the potential upper limit of microbial fuel cell performance for Geobacter in thin biofilms.


Assuntos
Fontes de Energia Bioelétrica/microbiologia , Geobacter/citologia , Geobacter/fisiologia , Biofilmes , Carbono/química , Carbono/metabolismo , Eletroquímica , Fenômenos Eletrofisiológicos , Nanoestruturas
16.
Biosens Bioelectron ; 40(1): 102-9, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22796023

RESUMO

The genes involved in the proposed pathway for Shewanella extracellular electron transfer (EET) are highly conserved. While extensive studies involving EET from a fresh water Shewanella microbe (S. oneidensis MR-1) to soluble and insoluble electron acceptors have been published, only a few reports have examined EET from marine strains of Shewanella. Thus, Shewanella frigidimarina (an isolate from Antarctic Sea ice) was used within miniature microbial fuel cells (mini-MFC) to evaluate potential power output. During the course of this study several distinct differences were observed between S. oneidensis MR-1 and S. frigidimarina under comparable conditions. The maximum power density with S. frigidimarina was observed when the anolyte was half-strength marine broth (1/2 MB) (0.28 µW/cm(2)) compared to Luria-Bertani (LB) (0.07 µW/cm(2)) or a defined growth minimal medium (MM) (0.02 µW/cm(2)). The systematic modification of S. frigidimarina cultured in 1/2 MB and LB with divalent cations shows that a maximum current output can be generated independent of internal ionic ohmic losses and the presence of external mediators.


Assuntos
Fontes de Energia Bioelétrica/microbiologia , Eletrodos , Shewanella/fisiologia , Cátions Bivalentes , Transporte de Elétrons , Transferência de Energia , Desenho de Equipamento , Análise de Falha de Equipamento , Shewanella/classificação , Especificidade da Espécie
17.
Biosens Bioelectron ; 31(1): 492-8, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22154401

RESUMO

There are several interconnected metabolic pathways in bacteria essential for the conversion of carbon electron sources directly into electrical currents using microbial fuel cells (MFCs). This study establishes a direct exogenous method to increase power output from a Shewanella oneidensis MR-1 containing MFC by adding calcium chloride to the culture medium. The current output from each CaCl(2) concentration tested revealed that the addition of CaCl(2) to 1400 µM increased the current density by >80% (0.95-1.76 µA/cm(2)) using sodium lactate as the sole carbon source. Furthermore, polarization curves showed that the maximum power output could be increased from 157 to 330 µW with the addition of 2080 µM CaCl(2). Since the conductivity of the culture medium did not change after the addition of CaCl(2) (confirmed by EIS and bulk conductivity measurements), this increase in power was primarily biological and not based on ionic effects. Thus, controlling the concentration of CaCl(2) is a pathway to increase the efficiency and performance of S. oneidensis MR-1 MFCs.


Assuntos
Fontes de Energia Bioelétrica/microbiologia , Cloreto de Cálcio/metabolismo , Transferência de Energia/fisiologia , Shewanella/fisiologia , Desenho de Equipamento , Análise de Falha de Equipamento
18.
Rev Sci Instrum ; 82(5): 055108, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21639539

RESUMO

A zero-power ballast control system that could be used to float and submerge a device solely using a gas source was built and tested. This system could be used to convey sensors, data loggers, and communication devices necessary for water quality monitoring and other applications by periodically maneuvering up and down a water column. Operational parameters for the system such as duration of the submerged and buoyant states can be varied according to its design. The gas source can be of any origin, e.g., compressed air, underwater gas vent, gas produced by microbes, etc. The zero-power ballast system was initially tested using a gas pump and further tested using gas produced by Clostridium acetobutylicum. Using microbial gas production as the only source of gas and no electrical power during operation, the system successfully floated and submerged periodically with a period of 30 min for at least 24 h. Together with microbial fuel cells, this system opens up possibilities for underwater monitoring systems that could function indefinitely.


Assuntos
Clostridium acetobutylicum/metabolismo , Gases/metabolismo , Imersão , Fenômenos Físicos , Desenho de Equipamento
19.
Bioelectrochemistry ; 81(2): 74-80, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21402501

RESUMO

Shewanella is frequently used as a model microorganism for microbial bioelectrochemical systems. In this study, we used cyclic voltammetry (CV) to investigate extracellular electron transfer mechanisms from S. oneidensis MR-1 (WT) and five deletion mutants: membrane bound cytochrome (∆mtrC/ΔomcA), transmembrane pili (ΔpilM-Q, ΔmshH-Q, and ΔpilM-Q/ΔmshH-Q) and flagella (∆flg). We demonstrate that the formal potentials of mediated and direct electron transfer sites of the derived biofilms can be gained from CVs of the respective biofilms recorded at bioelectrocatlytic (i.e. turnover) and lactate depleted (i.e. non-turnover) conditions. As the biofilms possess only a limited bioelectrocatalytic activity, an advanced data processing procedure, using the open-source software SOAS, was applied. The obtained results indicate that S. oneidensis mutants used in this study are able to bypass hindered direct electron transfer by alternative redox proteins as well as self-mediated pathways.


Assuntos
Grupo dos Citocromos c/química , Grupo dos Citocromos c/genética , Fímbrias Bacterianas/genética , Flagelos/genética , Potenciometria/métodos , Shewanella/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Fontes de Energia Bioelétrica , Biofilmes , Grupo dos Citocromos c/metabolismo , Citocromos/química , Citocromos/metabolismo , Eletrodos , Transporte de Elétrons , Fímbrias Bacterianas/química , Fímbrias Bacterianas/metabolismo , Flagelos/química , Flagelos/metabolismo , Técnicas de Inativação de Genes , Mutação/genética , Oxirredução , Ligação Proteica
20.
J Microbiol Methods ; 87(3): 320-4, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21963962

RESUMO

The identification, production, and potential electron conductivity of bacterial extracellular nanofilaments is an area of great study, specifically in Shewanella oneidensis MR-1. While some studies focus on nanofilaments attached to the cellular body, many studies require the removal of these nanofilaments for downstream applications. The removal of nanofilaments from S. oneidensis MR-1 for further study requires not only that the nanofilaments be detached, but also for the cell bodies to remain intact. This is a study to both qualitatively (AFM) and quantitatively (LC/MS-MS) assess several nanofilament shearing methods and determine the optimal procedure. The best method for nanofilament removal, as judged by maximizing extracellular filamentous proteins and minimizing membrane and intracellular proteins, is vortexing a washed cell culture for 10 min.


Assuntos
Nanofibras , Shewanella/isolamento & purificação , Cromatografia Líquida , Microscopia de Força Atômica , Shewanella/ultraestrutura , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa