Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 25(9)2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32392837

RESUMO

Walnut (Juglans regia L.) septum represents an interesting bioactive compound source by-product. In our study, a rich phenolic walnut septum extract, previously selected, was further examined. The tocopherol content determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS) revealed higher amounts of α-tocopherol compared to γ- and δ-tocopherols. Moreover, several biological activities were investigated. The in vitro inhibiting assessment against acetylcholinesterase, α-glucosidase, or lipase attested a real management potential in diabetes or obesity. The extract demonstrated very strong antimicrobial potential against Staphylococcus aureus, Pseudomonas aeruginosa and Salmonella enteritidis. It also revealed moderate (36.08%) and strong (43.27%) antimutagenic inhibitory effects against TA 98 and TA 100 strains. The cytotoxicity of the extract was assessed on cancerous (A549, T47D-KBluc, MCF-7) and normal (human gingival fibroblasts (HGF)) cell lines. Flow cytometry measurements confirmed the cytotoxicity of the extract in the cancerous cell lines. Additionally, the extract demonstrated antioxidant activity on all four cell types, as well as anti-inflammatory activity by lowering the inflammatory cytokines (interleukin-6 (IL-6), interleukin-8 (IL-8), interleukin-1 ß (IL-1ß)) evaluated in HGF cells. To the best of our knowledge, most of the cellular model analyses were performed for the first time in this matrix. The results prove that walnut septum may be a potential phytochemical source for pharmaceutical and food industry.


Assuntos
Anti-Infecciosos/farmacologia , Anti-Inflamatórios/farmacologia , Antimutagênicos/farmacologia , Antioxidantes/farmacologia , Juglans/química , Nozes/química , Tocoferóis/análise , Anti-Inflamatórios/análise , Antioxidantes/análise , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Inibidores da Colinesterase/análise , Cromatografia Líquida , Inibidores de Glicosídeo Hidrolases/análise , Humanos , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Lipase/antagonistas & inibidores , Extratos Vegetais/análise , Extratos Vegetais/química , Pseudomonas aeruginosa/efeitos dos fármacos , Salmonella enteritidis/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Espectrometria de Massas em Tandem
2.
Pharmaceutics ; 14(11)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36432692

RESUMO

The combination of magnetic hyperthermia with chemotherapy is considered a promising strategy in cancer therapy due to the synergy between the high temperatures and the chemotherapeutic effects, which can be further developed for targeted and remote-controlled drug release. In this paper we report a simple, rapid, and reproducible method for the preparation of thermosensitive magnetoliposomes (TsMLs) loaded with doxorubicin (DOX), consisting of a lipidic gel formation from a previously obtained water-in-oil microemulsion with fine aqueous droplets containing magnetic nanoparticles (MNPs) dispersed in an organic solution of thermosensitive lipids (transition temperature of ~43 °C), followed by the gel hydration with an aqueous solution of DOX. The obtained thermosensitive magnetoliposomes (TsMLs) were around 300 nm in diameter and exhibited 40% DOX incorporation efficiency. The most suitable MNPs to incorporate into the liposomal aqueous lumen were Zn ferrites, with a very low coercive field at 300 K (7 kA/m) close to the superparamagnetic regime, exhibiting a maximum absorption rate (SAR) of 1130 W/gFe when dispersed in water and 635 W/gFe when confined inside TsMLs. No toxicity of Zn ferrite MNPs or of TsMLs was noticed against the A459 cancer cell line after 48 h incubation over the tested concentration range. The passive release of DOX from the TsMLs after 48h incubation induced a toxicity starting with a dosage level of 62.5 ug/cm2. Below this threshold, the subsequent exposure to an alternating magnetic field (20-30 kA/m, 355 kHz) for 30 min drastically reduced the viability of the A459 cells due to the release of incorporated DOX. Our results strongly suggest that TsMLs represent a viable strategy for anticancer therapies using the magnetic field-controlled release of DOX.

3.
Nanomaterials (Basel) ; 12(20)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36296768

RESUMO

The collective organization of magnetic nanoparticles (MNPs) influences significantly their hyperthermic properties, relevant for their in vitro and in vivo applications. We report a systematic investigation of the effects of the concentration and the static bias direct current (DC) magnetic field superposed over the alternating magnetic field (AMF), both in a parallel and perpendicular configuration, on the specific absorption rate (SAR) by using zinc ferrite MNPs. The nonmonotonic dependence of the SAR on the concentration, with a maximum at very small concentrations (c ≤ 0.1 mgFe/mL), followed by a minimum at 0.25 mgFe/mL, and the second maximum of 3.3 kW/gFe at around 1 mgFe/mL, was explained by the passage of the MNPs from a single particle behavior to a collective one and the role of the dipolar interactions. By superposing a static 10 kA/m bias DC field on the AMF we obtained an increase in the SAR for both parallel and perpendicular orientations, up to 4285 W/gFe and 4070 W/gFe, respectively. To the best of our knowledge, this is the first experimental proof of a significant enhancement of the SAR produced by a perpendicular DC field. The effect of the DC field to increase the SAR is accompanied by an increase in the hyperthermia coercive field (HcHyp) for both configurations. No enhancement of the DC fields was noticed for the MNPs immobilized in a solid matrix but the DC field increases the HcHyp only in the parallel configuration. This translates into a higher SAR value for the perpendicular configuration as compared to the parallel configuration. These results have practical applications for magnetic hyperthermia.

4.
Biomedicines ; 10(7)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35884954

RESUMO

The applications of ferrimagnetic nanoparticles (F-MNPs) in magnetic hyperthermia (MH) are restricted by their stabilization in microscale aggregates due to magnetostatic interactions significantly reducing their heating performances. Coating the F-MNPs in a silica layer is expected to significantly reduce the magnetostatic interactions, thereby increasing their heating ability. A new fast, facile, and eco-friendly oil-in-water microemulsion-based method was used for coating Zn0.4Fe2.6O4 F-MNPs in a silica layer within 30 min by using ultrasounds. The silica-coated clusters were characterized by various physicochemical techniques and MH, while cytotoxicity studies, cellular uptake determination, and in vitro MH experiments were performed on normal and malignant cell lines. The average hydrodynamic diameter of silica-coated clusters was approximately 145 nm, displaying a high heating performance (up to 2600 W/gFe). Biocompatibility up to 250 µg/cm2 (0.8 mg/mL) was recorded by Alamar Blue and Neutral Red assays. The silica-coating increases the cellular uptake of Zn0.4Fe2.6O4 clusters up to three times and significantly improves their intracellular MH performances. A 90% drop in cellular viability was recorded after 30 min of MH treatment (20 kA/m, 355 kHz) for a dosage level of 62.5 µg/cm2 (0.2 mg/mL), while normal cells were more resilient to MH treatment.

5.
Antioxidants (Basel) ; 11(2)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35204101

RESUMO

In this study, the biological activities of four extracts from Vitis vinifera by-products: two pomace extracts, white (WPE) and red (RPE), a canes extract (CE), and their combination (CoE), were evaluated, to be included in freeze-drying mouthwashes formulations. The cytocompatibility and anticancerous potential of the four extracts were tested on three cancerous cell lines, as well as the cytoprotective activity against nicotine-induced cytotoxicity and the antioxidant potential determined on a human gingival fibroblasts (HGF) cell line. Additionally, the anti-inflammatory activity and the antimicrobial activity against several microorganisms from the oral microbiome were tested. Freeze-dried mouthwashes with CoE were prepared and characterized, both as lyophilizates and after reconstitution. The four tested extracts showed the highest cytotoxicity on MDA-kb2 cell line. The antioxidant potential was demonstrated for WPE, RPE, CE, and CoE, both in non-stimulated and H2O2 stimulated conditions. The four extracts reduced the levels of proinflammatory cytokines (IL-6, IL-8, and IL-1ß) in a dose-dependent manner, confirming their anti-inflammatory activity. The antimicrobial activity of tested extracts was shown against pathogenic bacteria from the oral microbiome. Mouthwashes of CoE with poloxamer-407, xylitol, and different ratios of mannitol were prepared by freeze-drying leading to porous formulations with interesting mechanical properties and reconstitution times.

6.
Pharmaceutics ; 13(12)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34959431

RESUMO

The clinical translation of magnetic hyperthermia (MH) needs magnetic nanoparticles (MNPs) with enhanced heating properties and good biocompatibility. Many studies were devoted lately to the increase in the heating power of iron oxide MNPs by doping the magnetite structure with divalent cations. A series of MNPs with variable Zn/Fe molar ratios (between 1/10 and 1/1) were synthesized by using a high-temperature polyol method, and their physical properties were studied with different techniques (Transmission Electron Microscopy, X-ray diffraction, Fourier Transform Infrared Spectroscopy). At low Zn doping (Zn/Fe ratio 1/10), a significant increase in the saturation magnetization (90 e.m.u./g as compared to 83 e.m.u./g for their undoped counterparts) was obtained. The MNPs' hyperthermia properties were assessed in alternating magnetic fields up to 65 kA/m at a frequency of 355 kHz, revealing specific absorption rates of up to 820 W/g. The Zn ferrite MNPs showed good biocompatibility against two cell lines (A549 cancer cell line and BJ normal cell line) with a drop of only 40% in the viability at the highest dose used (500 µg/cm2). Cellular uptake experiments revealed that the MNPs enter the cells in a dose-dependent manner with an almost 50% higher capacity of cancer cells to accommodate the MNPs. In vitro hyperthermia data performed on both cell lines indicate that the cancer cells are more sensitive to MH treatment with a 90% drop in viability after 30 min of MH treatment at 30 kA/m for a dose of 250 µg/cm2. Overall, our data indicate that Zn doping of iron oxide MNPs could be a reliable method to increase their hyperthermia efficiency in cancer cells.

7.
Antioxidants (Basel) ; 9(5)2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32423149

RESUMO

Antioxidant dietary intervention is considered a potential strategy in delaying age-related dysfunctions. In this study of 56 days, we assessed the antioxidant effects of walnut kernel (WK) and walnut septum extract (WSE) in a D-galactose (D-gal)-induced aging model and in a naturally aged rat model. Young Wistar rats, treated with D-gal (1200 mg/week), and old rats received daily WK or WSE added to the feed. After 8 weeks, blood, liver, and brain samples were collected and hematological, biochemical, oxidative stress biomarkers, histological, and immunohistochemical analyses were performed. Moreover, acetylcholinesterase activity was investigated in brain homogenates. The outcomes demonstrated significant improvement in cellular antioxidant activity and/or decrease of reactive oxygen species, advanced glycation end products, nitric oxide, malondialdehyde, or increase of glutathione after WK or WSE intake in both models. Additionally, WSE showed hypoglycemic effect, and both WK and WSE lowered acetylcholinesterase activity. Both diets could protect neurons against the induced senescence and could reverse the pathological conditions in the physiological aged brain. Thus, dietary supplementation with WK or WSE can maintain the liver and brain health and reduce the risk of age-related diseases, as well as delaying the onset of aging processes.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa