Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 136 Pt C: 1227-42, 2015 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-25456664

RESUMO

In this work, the molecular structure, harmonic vibrational frequencies, UV, NBO and AIM of 3-thiophenecarboxilic acid (abbreviated as 3-TCA) monomer and dimer has been investigated. The FT-IR and FT-Raman spectra were recorded. The ground-state molecular geometry and vibrational frequencies have been calculated by using the Hartree-Fock (HF) and density functional theory (DFT)/B3LYP methods and 6-311++G(d,p) as a basis set. The fundamental vibrations were assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with VEDA program. Comparison of the observed fundamental vibrational frequencies of 3-TCA with calculated results by HF and DFT methods indicates that B3LYP is better to HF method for molecular vibrational problems. The difference between the observed and scaled wavenumber values is very small. The theoretically predicted FT-IR and FT-Raman spectra of the title compound have been constructed. A study on the Mulliken atomic charges, the electronic properties were performed by time-dependent DFT (TD-DFT) approach, frontier molecular orbitals (HOMO-LUMO), molecular electrostatic potential (MEP) and thermodynamic properties have been performed. The electric dipole moment (µ) and the first hyperpolarizability (ß) values of the investigated molecule have been also computed.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 136 Pt B: 579-93, 2015 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-25448958

RESUMO

In this work, molecular geometries and fundamental vibrational frequencies of 2-furanacetic acid (2FAA) and its hydrogen bonded dimer were investigated using DFT/B3LYP method with 6-311++G(d,p) as basis set. The FT-infrared and FT-Raman spectra of the 2FAA compound were recorded in the region 4000-400 cm(-1). The theoretical wavenumbers were scaled and compared with experimental FT-IR and FT-Raman spectra. Complete vibrational assignments and analysis of the fundamental modes of monomer and dimer structures were performed on the basis of the potential energy distribution (PED) calculations. A study on the electronic properties, such as excitation energies, oscillator strength, wavelengths, HOMO and LUMO energies, are performed by time-dependent DFT (TD-DFT) approach. Molecular stability arising from hyperconjugative interactions and charge delocalization has been analyzed using Natural Bond Orbital (NBO) analysis. Topological parameters such an electron density and its Laplacian at bond critical points (BCP) of O-H and O⋯H contact bonds were analyzed in details with the help of the atoms in molecules (AIM) approach in order to study the intermolecular hydrogen bonding. The nonlinear optical properties of the title molecule have been investigated. Moreover, molecular electrostatic potential (MEP) surface was plotted for predicting sites and relative reactivities towards electrophilic and nucleophilic attack. The nonlinear optical properties were reported and compared with that of the urea. The thermodynamic properties like heat capacity, entropy, and enthalpy have been calculated for the molecule at different temperatures.


Assuntos
Ácido Acético/química , Furanos/química , Dimerização , Modelos Moleculares , Teoria Quântica , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Termodinâmica
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 57(12): 2391-401, 2001 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11767833

RESUMO

This paper deals with the polarized IR spectra of the hydrogen bond in pimelic acid crystals and their quantitative interpretation. The spectra were measured for the vO-H and vO-D band frequency regions, at temperatures of 298 and 77 K, for the 'alpha' crystalline form of pimelic acid. Two kinds of transmission spectra were obtained, for the beam perpendicular to the two different crystalline faces: 'ac' and 'ab'. The spectra of the hydrogen and the deuterium bonded systems were quantitatively reproduced, with sufficient accuracy, on the basis of the 'strong-coupling' model, assuming the (COOH)2 cycles to be the structural units responsible for the basic spectral properties. It was found that the spectra could be reproduced only, when assuming spectral activity in the IR of the totally symmetric proton stretching vibrations in centrosymmetric cyclic dimers of hydrogen bonds. The polarization effects in the crystal spectra were interpreted as directly connected with the hydrogen bond orientation in the crystal. However, in the pimelic acid crystalline spectra there were not observed another polarization effects characteristic for another carboxylic acid crystals, depending on differentiation of the long- and of the short-wave branch properties of each of the vO-H and vO-D bands. The temperature variation only affect the intensity ratio between the lower- and the higher-frequency branches of the vO-H and vO-D bands. These spectral effects were ascribed to less strained hydrogen bond structures in the pimelic acid lattices of the alpha' crystalline form and a relatively low concentration of defects in the lattices.


Assuntos
Ácidos Pimélicos/química , Cristalização , Deutério/química , Dimerização , Ligação de Hidrogênio , Microscopia de Polarização , Modelos Químicos , Prótons , Espectrofotometria Infravermelho , Temperatura , Vibração
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa