RESUMO
BACKGROUND: The metabolism of cancer cells generally differs from that of normal cells. Indeed, most cancer cells have a high rate of glycolysis, even at normal oxygen concentrations. These metabolic properties can potentially be exploited for therapeutic intervention. In this context, we have developed troglitazone derivatives to treat hormone-sensitive and triple-negative breast cancers, which currently lack therapeutic targets, have an aggressive phenotype, and often have a worse prognosis than other subtypes. Here, we studied the metabolic impact of the EP13 compound, a desulfured derivative of Δ2-troglitazone that we synthetized and is more potent than its parent compounds. METHODS: EP13 was tested on two triple-negative breast cancer cell lines, MDA-MB-231 and Hs578T, and on the luminal cell line MCF-7. The oxygen consumption rate (OCR) of the treated cell lines, Hs578T mammospheres and isolated mitochondria was measured using the XFe24 Seahorse analyser. ROS production was quantified using the MitoSOX fluorescent probe. Glycolytic activity was evaluated through measurement of the extracellular acidification rate (ECAR), glucose consumption and lactate production in extracellular medium. The synergistic effect of EP13 with glycolysis inhibitors (oxamate and 2-deoxyglucose) on cell cytotoxicity was established using the Chou-Talalay method. RESULTS: After exposure to EP13, we observed a decrease in the mitochondrial oxygen consumption rate in MCF7, MDA-MB-231 and Hs578T cells. EP13 also modified the maximal OCR of Hs578T spheroids. EP13 reduced the OCR through inhibition of respiratory chain complex I. After 24 h, ATP levels in EP13-treated cells were not altered compared with those in untreated cells, suggesting compensation by glycolysis activity, as shown by the increase in ECAR, the glucose consumption and lactate production. Finally, we performed co-treatments with EP13 and glycolysis inhibitors (oxamate and 2-DG) and observed that EP13 potentiated their cytotoxic effects. CONCLUSION: This study demonstrates that EP13 inhibits OXPHOS in breast cancer cells and potentiates the effect of glycolysis inhibitors.
RESUMO
Breast cancer is one of the leading causes of cancer-related death among females worldwide. A major challenge is to develop innovative therapy in order to treat breast cancer subtypes resistant to current treatment. In the present study, we examined the effects of two Troglitazone derivatives Δ2-TGZ and AB186. Previous studies showed that both compounds induce apoptosis, nevertheless AB186 was a more potent agent. The kinetic of cellular events was investigated by real-time cell analysis system (RTCA) in MCF-7 (hormone dependent) and MDA-MB-231 (triple negative) breast cancer (TNBC) cells, followed by cell morphology analysis by immuno-localization. Both compounds induced a rapid modification of both impedance-based signals and cellular morphology. This process was associated with an inhibition of cell migration measured by wound healing and transwell assays in TNBC MDA-MB-231 and Hs578T cells. In order to identify cytoplasmic targets of AB186, we performed surface plasmon resonance (SPR) and pull-down analyses. Subsequently, 6 cytoskeleton components were identified as potential targets. We further validated α-tubulin as one of the direct targets of AB186. In conclusion, our results suggested that AB186 could be promising to develop novel therapeutic strategies to treat aggressive forms of breast cancer such as TNBC.
Assuntos
Neoplasias de Mama Triplo Negativas , Apoptose , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Humanos , Neoplasias de Mama Triplo Negativas/metabolismo , Tubulina (Proteína)RESUMO
PURPOSE: Cancer cells often elicit a higher glycolytic rate than normal cells, supporting the development of glycolysis inhibitors as therapeutic agents. 2-Deoxyglucose (2-DG) is used in this context due to its ability to compete with glucose. However, many studies do not take into account that 2-DG inhibits not only glycolysis but also N-glycosylation. Since there are limited publications on 2-DG mechanism of action in breast cancer, we studied its effects in breast cancer cell lines to determine the part played by glycolysis inhibition and N-linked glycosylation interference. METHODS AND RESULTS: 2-Deoxyglucose behaved as an anticancer agent with a similar efficiency on cell number decrease between the hormone-dependent MCF-7 and hormone-independent MDA-MB-231 breast cancer cells. It also interfered with the N-linked glycosylation process in both cell lines as illustrated by the migration profile of the lysosomal-associated membrane protein 2 and calumenin. These results are reinforced by the appearance of an abnormal Man7GlcNAc2 structure both on lipid-linked oligosaccharides and N-linked glycoproteins of 2-DG incubated MDA-MB-231 cells. Besides, 2-DG-induced a transient endoplasmic reticulum stress that was more sustained in MDA-MB-231 cells. Both changes were abrogated by mannose. 2-DG, even in the presence of mannose, decreased glycolysis in both cell lines. Mannose partially reversed the effects of 2-DG on cell numbers with N-linked glycosylation interference accounting for 37 and 47% of 2-DG anti-cancerous effects in MDA-MB-231 and MCF-7 cells, respectively. CONCLUSION: N-linked glycosylation interference and glycolysis disruption both contribute to the anticancer properties of 2-DG in breast cancer cells.
Assuntos
Neoplasias da Mama/tratamento farmacológico , Desoxiglucose/farmacologia , Glicólise/efeitos dos fármacos , Glicosilação/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Glucose/metabolismo , Glicoproteínas/antagonistas & inibidores , Glicoproteínas/química , Humanos , Células MCF-7RESUMO
PURPOSE: 40% of triple-negative breast cancer (TNBC) do not express claudin-1, a major constituent of tight junction. Patients with these "claudin-1-low" tumors present a higher relapse incidence. A major challenge in oncology is the development of innovative therapies for such poor prognosis tumors. In this context, we study the anticancer effects of ∆2-TGZ, a compound derived from troglitazone (TGZ), on cell models of these tumors. METHODS AND RESULTS: In MDA-MB-231 and Hs578T "claudin-1-low" TNBC cells, Δ2-TGZ treatment induced claudin-1 protein expression and triggered apoptosis as measured by FACS analysis (annexin V/PI co-staining). Interestingly, in the non-tumorigenic human breast epithelial cell line MCF-10A, the basal level of claudin-1 was not modified following Δ2-TGZ treatment, which did not induce apoptosis. Furthermore, claudin-1-transfected MDA-MB-231 and Hs578T cells displayed a significant increase of cleaved PARP-1 and caspase 7, caspase 3/7 activities, and TUNEL staining. RNA interference was performed in order to inhibit Δ2-TGZ-induced claudin-1 expression in both the cells. In absence of claudin-1, a decrease of cleaved PARP-1 and caspase 7 and caspase 3/7 activities were observed in MDA-MB-231 but not in Hs578T cells. CONCLUSION: Claudin-1 overexpression and Δ2-TGZ treatment are associated to apoptosis in MDA-MB-231 and Hs578T "claudin-1-low" TNBC. Moreover, in MDA-MB-231 cells, claudin-1 is involved in the pro-apoptotic effect of Δ2-TGZ. Our results suggest that claudin-1 re-expression could be an interesting therapeutic strategy for "claudin-1-low" TNBC.
Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Claudina-1/metabolismo , Ésteres do Ácido Sulfúrico/farmacologia , Tiazolidinedionas/farmacologia , Neoplasias de Mama Triplo Negativas/metabolismo , Apoptose/genética , Caspase 3/metabolismo , Caspase 7/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Claudina-1/genética , Feminino , Regulação da Expressão Gênica , Humanos , Transporte Proteico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , TroglitazonaRESUMO
Our aim was to better understand peroxisome proliferator-activated receptor gamma (PPARγ)-independent pathways involved in anti-cancer effects of thiazolidinediones (TZDs). We focused on Δ2-troglitazone (Δ2-TGZ), a PPARγ inactive TZD that affects breast cancer cell viability. Appearance of TUNEL positive cells, changes in mitochondrial membrane potential, cleavage of poly(ADP-ribose) polymerase (PARP)-1 and caspase-7 revealed that apoptosis occurred in both hormone-dependent MCF7 and hormone-independent MDA-MB-231 breast cancer cells after 24 and 48 h of treatment. A microarray study identified endoplasmic reticulum (ER) stress as an essential cellular function since many genes involved in ER stress were upregulated in MCF7 cells following Δ2-TGZ treatment. Δ2-TGZ-induced ER stress was further confirmed in MCF7 cells by phosphorylation of pancreatic endoplasmic reticulum kinase-like endoplasmic reticulum kinase (PERK) and its target eIF2α after 1.5 h, rapid increase in activating transcription factor (ATF) 3 mRNA levels, splicing of X-box binding protein 1 (XBP1) after 3 h, accumulation of binding immunogloblulin protein (BiP) and CCAAT-enhancer-binding protein homologous protein (CHOP) after 6 h. Immunofluorescence microscopy indicated that CHOP was relocalized to the nucleus of treated cells. Similarly, in MDA-MB-231 cells, overexpression of ATF3, splicing of XBP1, and accumulation of BiP and CHOP were observed following Δ2-TGZ treatment. In MCF7 cells, knock-down of CHOP or the inhibition of c-Jun N-terminal kinase (JNK) did not impair cleavage of PARP-1 and caspase-7. Altogether, our results show that ER stress is an early response of major types of breast cancer cells to Δ2-TGZ, prior to, but not causative of apoptosis.
Assuntos
Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Cromanos/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Hipoglicemiantes/farmacologia , PPAR gama/antagonistas & inibidores , Tiazolidinedionas/farmacologia , Biomarcadores Tumorais , Western Blotting , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Caspase 7/genética , Caspase 7/metabolismo , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cromanos/química , Retículo Endoplasmático/metabolismo , Feminino , Imunofluorescência , Humanos , Marcação In Situ das Extremidades Cortadas , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Fosforilação/efeitos dos fármacos , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Tiazolidinedionas/química , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo , Troglitazona , Células Tumorais CultivadasRESUMO
We present the design, fabrication, and characterization of an implantable neural interface based on anisotropic magnetoresistive (AMR) magnetic-field sensors that combine reduced size and high performance at body temperature. The sensors are based on La0.67Sr0.33MnO3 (LSMO) as a ferromagnetic material, whose epitaxial growth has been suitably engineered to get uniaxial anisotropy and large AMR output together with low noise even at low frequencies. The performance of LSMO sensors of different film thickness and at different temperatures close to 37 °C has to be explored to find an optimum sensitivity of â¼400%/T (with typical detectivity values of 2 nT·Hz-1/2 at a frequency of 1 Hz and 0.3 nT·Hz-1/2 at 1 kHz), fitted for the detection of low magnetic signals coming from neural activity. Biocompatibility tests of devices consisting of submillimeter-size LSMO sensors coated by a thin poly(dimethyl siloxane) polymeric layer, both in vitro and in vivo, support their high suitability as implantable detectors of low-frequency biological magnetic signals emerging from heterogeneous electrically active tissues.
Assuntos
Campos Magnéticos , Próteses e Implantes , Anisotropia , PolímerosRESUMO
The SOX family of transcription factors is thought to regulate gene expression in a wide variety of developmental processes. Namely, SOX9 expression is conserved in vertebrate sex determination or differentiation. Nevertheless, information about caudate amphibians is lacking. In this study, we provide data on Pleurodeles waltl, a species that displays a ZZ/ZW genetic mode of sex determination and a temperature-dependent mechanism of female-to-male sex reversal. Phylogenetic analysis of SOX9 P. waltl ortholog reveals that the deduced protein segregates from the group of anuran and could be more closely related to amniote than to anamniote. However, SOX9 lacks the PQA-rich domain present in amniotes. In larvae, SOX9 is expressed in both sexes in gonad-mesonephros complexes as soon as stage 42, before gonad differentiation. At stage 54(60d) at which testis differentiation is already in progress, analyses of isolated gonads reveal a male-enriched expression of SOX9, which was quantified by real-time PCR. At the end of metamorphosis (stage 56), SOX9 shows a nuclear localization only in the testis. In adults, SOX9 is still expressed in testes and ovaries. In the ovary, SOX9 is found in oocytes from stage I to stage VI but it is never detected in the nucleus. Our results suggest that in P. waltl, like in non mammalian vertebrates, SOX9 could play a role during the late phase of gonad differentiation rather than in sex determination. Its role in germ cells of the adult ovary has still to be elucidated.
Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Ovário/metabolismo , Pleurodeles/embriologia , Pleurodeles/metabolismo , Fatores de Transcrição SOX9/metabolismo , Testículo/metabolismo , Sequência de Aminoácidos , Animais , Clonagem Molecular , Feminino , Larva/genética , Larva/metabolismo , Masculino , Dados de Sequência Molecular , Ovário/embriologia , Filogenia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição SOX9/química , Fatores de Transcrição SOX9/genética , Caracteres Sexuais , Testículo/embriologia , Fatores de TempoRESUMO
Xkid chromokinesin is required for chromosome alignment on the metaphase plate of spindles formed in Xenopus laevis egg extracts. We have investigated the role of Xkid in Xenopus oocyte meiotic maturation, a progesterone-triggered process that reinitiates the meiotic cell cycle in oocytes arrested at the G2/M border of meiosis I. Here we show that Xkid starts to accumulate at the time of germinal vesicle breakdown and reaches its largest quantities at metaphase II in oocytes treated with progesterone. Both germinal vesicle breakdown and spindle assembly at meiosis I can occur normally in the absence of Xkid. But Xkid-depleted oocytes cannot reactivate Cdc2/cyclin B after meiosis I and, instead of proceeding to meiosis II, they enter an interphase-like state and undergo DNA replication. Expression of a Xkid mutant that lacks the DNA-binding domain allows Xkid-depleted oocytes to complete meiotic maturation. Our results show that Xkid has a role in the meiotic cell cycle that is independent from its role in metaphase chromosome alignment.
Assuntos
Segregação de Cromossomos/genética , Proteínas de Ligação a DNA/genética , Cinesinas/genética , Meiose/genética , Proteínas Nucleares/genética , Oócitos/crescimento & desenvolvimento , Proteínas de Xenopus , Xenopus laevis/genética , Animais , Apoptose/genética , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Proteínas de Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/genética , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Segregação de Cromossomos/efeitos dos fármacos , Ciclina B/genética , Ciclina B/metabolismo , Replicação do DNA/efeitos dos fármacos , Replicação do DNA/genética , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/deficiência , Feminino , Cinesinas/biossíntese , Cinesinas/deficiência , Meiose/efeitos dos fármacos , Proteínas Nucleares/biossíntese , Proteínas Nucleares/deficiência , Oligorribonucleotídeos Antissenso , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Estrutura Terciária de Proteína/efeitos dos fármacos , Estrutura Terciária de Proteína/genética , Xenopus laevis/embriologiaRESUMO
Numerous recent studies indicate that most anticancer effects of PPARγ agonists like thiazolidinediones are the result of PPARγ-independent pathways. These conclusions were obtained by several approaches including the use of thiazolidinedione derivatives like Δ2-Troglitazone (Δ2-TGZ) that does not activate PPARγ. Since biotinylation has been proposed as a mechanism able to increase the specificity of drug delivery to cancer cells which could express a high level of vitamin receptor, a biotinylated derivative of Δ2-TGZ (bΔ2-TGZ) has been synthetized. In the present article, we have studied the in vitro effects of this molecule on both hormone-dependent (MCF-7) and hormone-independent (MDA-MB-231) breast cancer cells. In both cell lines, bΔ2-TGZ was more efficient than Δ2-TGZ to decrease cell viability. bΔ2-TGZ was also more potent than Δ2-TGZ to induce the proteasomal degradation of cyclin D1 in both cell lines and those of ERα in MCF-7 cells. However, in competition experiments, the presence of free biotin in the culture medium did not decrease the antiproliferative action of bΔ2-TGZ. Besides, other compounds that had no biotin but that were substituted at the same position of the phenolic group of the chromane moiety of Δ2-TGZ decreased cell viability similarly to bΔ2-TGZ. Hence, we concluded that the increased antiproliferative action of bΔ2-TGZ was not due to biotin itself but to the functionalization of the terminal hydroxyl group. This should be taken into account for the design of new thiazolidinedione derivatives able to affect not only hormone-dependent but also hormone-independent breast cancer cells in a PPARγ-independent pathway.
Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Proliferação de Células/efeitos dos fármacos , Cromanos/farmacologia , Estrogênios/metabolismo , Neoplasias Hormônio-Dependentes/metabolismo , PPAR gama/agonistas , Tiazolidinedionas/farmacologia , Antineoplásicos/química , Biotinilação , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cromanos/química , Ciclina D1/metabolismo , Relação Dose-Resposta a Droga , Receptor alfa de Estrogênio/metabolismo , Feminino , Humanos , Concentração Inibidora 50 , Neoplasias Hormônio-Dependentes/genética , Neoplasias Hormônio-Dependentes/patologia , PPAR gama/genética , PPAR gama/metabolismo , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Processamento de Proteína Pós-Traducional , Tiazolidinedionas/química , Transfecção , TroglitazonaRESUMO
Breast cancer is a major medical threat which cannot be sufficiently addressed by current therapies because of spontaneous or acquired treatment resistance. Besides, triple-negative breast cancer (TNBC) tumors do not respond to targeted therapies, thus new therapeutic strategies are needed. In this context, we designed and prepared new desulfured troglitazone (TGZ)-derived molecules and evaluated them in vitro for their anti-proliferative activity, with a special focus on triple-negative breast cancer cell lines. Optimization of the synthetic strategies and deracemization of the lead compound were performed to give highly active compound 10 with low-micromolar potency. Further studies revealed that this compound triggers apoptosis rather than cell cycle arrest as observed with TGZ.
Assuntos
Antineoplásicos/farmacologia , Troglitazona/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Troglitazona/síntese química , Troglitazona/químicaRESUMO
BACKGROUND: In numerous Caudata, the testis is known to differentiate new lobes at adulthood, leading to a multiple testis. The Iberian ribbed newt Pleurodeles waltl has been studied extensively as a model for sex determination and differentiation. However, the evolution of its testis after metamorphosis is poorly documented. METHODS: Testes were obtained from Pleurodeles waltl of different ages reared in our laboratory. Testis evolution was studied by several approaches: morphology, histology, immunohistochemistry and RT-PCR. Surgery was also employed to study testis regeneration. RESULTS: In this species, the testis is linked to the lung. This association consists of connective tissue derived from the mesorchium and the coelomic epithelium surrounding the lung and takes place at the end of larval life. This tissue contains lobules including primordial germ cells with a typical large and polylobular nucleus. The anterior part of the testis remains thin and undifferentiated while the posterior part differentiates in a large first testis lobe where spermatogenesis occurs during the first year of life. The undifferentiated status of the anterior part is attested by the lack of expression of the testis marker Dmrt1 and the meiosis entry marker Dmc1. Three-year-old Pleurodeles waltl possess multiple testes made up of two lobes. The second lobe appears at the caudal extremity of the first one from residual primordial germ cells located near or even inside efferent ducts in the glandular tissue that usually appears following spermatozoa extrusion. Surprisingly, in the case of surgical elimination of the anterior part of the testis, de novo spermatogenesis is stopped in the first lobe which becomes restricted to the glandular tissue. Following first testis lobe removal, the anterior part of the testis regenerates a new testis lobe, a process stimulated in the presence of DHT. CONCLUSION: Pleurodeles waltl constitute an original gonochoristic vertebrate model in which testis differentiation is observed up to adulthood.
Assuntos
Pleurodeles/anatomia & histologia , Diferenciação Sexual/fisiologia , Testículo/anatomia & histologia , Animais , Biomarcadores/metabolismo , Proliferação de Células , Di-Hidrotestosterona/farmacologia , Células Germinativas/citologia , Larva/anatomia & histologia , Larva/crescimento & desenvolvimento , Larva/fisiologia , Pulmão/anatomia & histologia , Masculino , Pleurodeles/crescimento & desenvolvimento , Pleurodeles/fisiologia , Regeneração/efeitos dos fármacos , Testículo/crescimento & desenvolvimento , Testículo/fisiologia , Fatores de TempoRESUMO
Alcohol consumption increases the risk of breast cancer but the underlying mechanisms are not well understood. We have shown previously that ethanol activates ER signalling pathway in a cAMP/PKA-mediated ligand-independent manner. Since the activation of A2A adenosine receptor (A2AAR) by ethanol has been reported in other cell types, here we tested if cross-talk between this Gs-coupled receptor and ERalpha could be involved in ethanol effects in breast cancer cells. Our study shows that A2AAR is expressed and functional in the hormone-dependent breast cancer cell line MCF-7. Interestingly, activation of this receptor by the selective agonist CGS21680 stimulates the transcription of progesterone receptor, a well known estrogen target gene. CGS21680 also stimulates the pEREtkLuc reporter activity in transfected MCF-7 cells, an effect antagonized by the antiestrogen ICI182,780. Moreover, CGS21680 stimulates the proliferation of MCF-7 cells similarly to E2. Finally, the A2AAR antagonist MSX-3 inhibits the ethanol-induced activation of ERalpha signalling pathway. These results demonstrate cross-talk between A2AAR and ERalpha that is involved in ethanol action. This could open new perspectives for the therapy of estrogen-dependent breast cancer.
Assuntos
Neoplasias da Mama/etiologia , Receptor alfa de Estrogênio/fisiologia , Etanol/toxicidade , Receptor Cross-Talk/fisiologia , Receptor A2A de Adenosina/fisiologia , Transdução de Sinais/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Receptor alfa de Estrogênio/efeitos dos fármacos , Feminino , Humanos , Neoplasias Hormônio-Dependentes/terapia , Receptor A2A de Adenosina/genéticaRESUMO
Peroxisome proliferator-activated receptor gamma (PPARgamma) is a nuclear receptor that can be activated by natural ligands such as 15-deoxy-delta(12,14)-prostaglandin J2 (15d-PGJ(2)) as well as synthetic drugs such as thiazolidinediones. The treatment of human breast cancer cell lines with PPARgamma agonists is known to have antiproliferative effects but the role of PPARgamma activation in the process remains unclear. In the present study, we investigated the effects of four PPARgamma agonists, Rosiglitazone (RGZ), Ciglitazone (CGZ), Troglitazone (TGZ) and the natural agonist 15d-PGJ(2), on estrogen receptor alpha (ERalpha) signalling pathway in two hormone-dependent breast cancer cell lines, MCF-7 and ZR-75-1. In both of them, TGZ, CGZ and 15d-PGJ(2) induced an inhibition of ERalpha signalling associated with the proteasomal degradation of ERalpha. ZR-75-1 cells were more sensitive than MCF-7 cells to these compounds. Treatments that induced ERalpha degradation inhibited cell proliferation after 24 h. In contrast, 24 h exposure to RGZ, the most potent activator of PPARgamma disrupted neither ERalpha signalling nor cell proliferation. 9-cis retinoic acid never potentiated the proteasomal degradation of ERalpha. PPARgamma antagonists (T0070907, BADGE and GW 9662) did not block the proteolysis of ERalpha in MCF-7 and ZR-75-1 cells treated with TGZ. ERalpha proteolysis still occurred in case of PPARgamma silencing as well as in case of treatment with the PPARgamma-inactive compound Delta2-TGZ, demonstrating a PPARgamma-independent mechanism. The use of thiazolidinedione derivatives able to trigger ERalpha degradation by a PPARgamma-independent pathway could be an interesting tool for breast cancer therapy.
Assuntos
Neoplasias da Mama/metabolismo , Receptor alfa de Estrogênio/metabolismo , PPAR gama/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Cromanos/farmacologia , Relação Dose-Resposta a Droga , Inativação Gênica , Humanos , Imuno-Histoquímica/métodos , Ligantes , PPAR gama/agonistas , Complexo de Endopeptidases do Proteassoma/metabolismo , Interferência de RNA , Transdução de Sinais , Tiazolidinedionas/farmacologia , TroglitazonaRESUMO
Wild type embryos of the newt Pleurodeles waltl were used to realize parabiosis, a useful model to study the effect of endogenous circulating hormones on gonad development. The genotypic sex of each parabiont (ZZ male or ZW female) was determined early from the analysis of the sex chromosome borne marker peptidase-1. In ZZ/ZZ and ZW/ZW associations, gonads develop according to genetic sex. In ZZ/ZW associations, the ZZ gonads differentiate as normal testes while ZW gonads development shows numerous alterations. At the beginning of sex differentiation, these ZW gonads possess a reduced number of germ cells and a reduced expression of steroidogenic factor 1 and P450-aromatase mRNAs when compared to gonads from ZW/ZW associations. During gonad differentiation, conversely to the control situation, these germ cells do not enter meiosis as corroborated by chromatin status and absence of the meiosis entry marker DMC1; the activity of the estradiol-producing enzyme P450-aromatase is as low as in ZZ gonads. At adulthood, no germ cells are observed on histological sections, consistently with the absence of VASA expression. At this stage, the testis-specific marker DMRT1 is expressed only in ZZ gonads, suggesting that the somatic compartment of the ZW gonad is not masculinized. So, when exposed to ZZ hormones, ZW gonads reach the undifferentiated status but the ovary differentiation does not occur. This gonad is inhibited by a process affecting both somatic and germ cells. Additionally, the ZW gonad inhibition does not occur in the case of an exogenous estradiol treatment of larvae.
Assuntos
Ovário/embriologia , Parabiose , Pleurodeles/embriologia , Animais , Quimerismo/embriologia , Transtornos do Desenvolvimento Sexual/embriologia , Embrião não Mamífero , Estradiol/farmacologia , Feminino , Genótipo , Células Germinativas/fisiologia , Masculino , Meiose/fisiologia , Modelos Biológicos , Ovário/efeitos dos fármacos , Cromossomos Sexuais , Fatores SexuaisRESUMO
15-Deoxy-∆12,14-prostaglandin J2 (15dPGJ2) is a natural agonist of peroxisome proliferator-activated receptor γ (PPARγ) that displays anticancer activity. Various studies have indicated that the effects of 15dPGJ2 are due to both PPARγ-dependent and -independent mechanisms. In the present study, we examined the effects of a biotinylated form of 15dPGJ2 (b15dPGJ2) on hormone-dependent MCF7 and triplenegative MDAMB231 breast cancer cell lines. b15dPGJ2 inhibited cell proliferation more efficiently than 15dPGJ2 or the synthetic PPARγ agonist, efatutazone. b15dPGJ2 was also more potent than its non-biotinylated counterpart in inducing apoptosis. We then analyzed the mechanisms underlying this improved efficiency. It was found not to be the result of biotin receptor-mediated increased incorporation, since free biotin in the culture medium did not decrease the anti-proliferative activity of b15dPGJ2 in competition assays. Of note, b15dPGJ2 displayed an improved PPARγ agonist activity, as measured by transactivation experiments. Molecular docking analyses revealed a similar insertion of b15dPGJ2 and 15dPGJ2 into the ligand binding domain of PPARγ via a covalent bond with Cys285. Finally, PPARγ silencing markedly decreased the cleavage of the apoptotic markers, poly(ADP-ribose) polymerase 1 (PARP1) and caspase7, that usually occurs following b15dPGJ2 treatment. Taken together, our data indicate that biotinylation enhances the anti-proliferative and pro-apoptotic activity of 15dPGJ2, and that this effect is partly mediated via a PPARγ-dependent pathway. These results may aid in the development of novel therapeutic strategies for breast cancer treatment.
Assuntos
Neoplasias da Mama/metabolismo , PPAR gama/química , Prostaglandina D2/análogos & derivados , Sítios de Ligação/genética , Biotinilação/métodos , Neoplasias da Mama/química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Modelos Moleculares , Simulação de Acoplamento Molecular , PPAR gama/agonistas , PPAR gama/genética , Prostaglandina D2/química , Prostaglandina D2/farmacologia , Tiazolidinedionas/farmacologiaRESUMO
Because of the complex biological networks, many pathologic disorders fail to be treated with a molecule directed towards a single target. Thus, combination therapies are often necessary, but they have many drawbacks. An alternative consists in building molecules intended to interact with multiple targets, called designed multiple ligands. We followed such a strategy in order to treat metabolic syndrome, by setting up molecules directed towards both type 1 angiotensin II (AT1) receptor and peroxisome proliferator-activated receptor-γ (PPAR-γ). For this purpose, many molecules were prepared by merging both pharmacophores following three different strategies. Their ability to activate PPAR-γ and to block AT1 receptors were evaluated in vitro. This strategy led to the preparation of many new PPAR-γ activating and AT1 blocking molecules. Among them, some exhibited both activities, highlighting the convenience of this approach.
Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/química , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Desenho de Fármacos , PPAR gama/agonistas , Bloqueadores do Receptor Tipo 1 de Angiotensina II/síntese química , Animais , Cromanos/síntese química , Cromanos/química , Cromanos/farmacologia , Humanos , Imidazóis/síntese química , Imidazóis/química , Imidazóis/farmacologia , Ligantes , Células MCF-7 , Masculino , Simulação de Acoplamento Molecular , PPAR gama/metabolismo , Ratos Wistar , Receptor Tipo 1 de Angiotensina/metabolismo , Triazóis/síntese química , Triazóis/química , Triazóis/farmacologiaRESUMO
Alcohol consumption is an increased risk factor for hormone-dependent breast cancer but the underlying molecular bases are unknown. Several studies suggest that ethanol could activate the estrogen signaling pathway. We have performed an in vitro study in order to investigate the molecular players involved in this phenomenon. Exposure of MCF-7 breast cancer cells to ethanol induced an increase in the mRNA level of two well known estrogen target genes: progesterone receptor (PR) and pS2. This result was confirmed by an increase in luciferase activity in pEREtkLuc-transfected MCF-7 cells exposed to ethanol. These effects, whose intensity was similar to those of E2, were observed also in steroid-free medium and were inhibited by the antiestrogen ICI 182,780. This suggested a ligand-independent activation of ERalpha that was confirmed by the absence of ERalpha proteolysis in ethanol-treated cells. Using PKA inhibitor (H89), the study of phospho-CREB by Western blot and transfection experiments with a CRE-reporter construct demonstrated that PKA was involved in ethanol-induced transcription of ERalpha target genes. Adenylyl cyclase inhibition impaired the activation of estrogen signaling pathway induced by ethanol. The results obtained in vitro, are discussed in regard to alcohol consumption and relevance to humans.
Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , AMP Cíclico/fisiologia , Receptor alfa de Estrogênio/fisiologia , Etanol/toxicidade , Transdução de Sinais/fisiologia , Neoplasias da Mama , Linhagem Celular Tumoral , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Estradiol/análogos & derivados , Estradiol/farmacologia , Fulvestranto , Humanos , Ligantes , Receptores de Progesterona/genética , Fator Trefoil-1 , Proteínas Supressoras de Tumor/genéticaRESUMO
Alcohol consumption is a well-established risk factor for hormone-dependent breast cancer. In vitro studies performed to understand the mechanisms by which ethanol acts on breast cancer cells have shown that this compound stimulates both proliferation and migration. In the present study, we show by gelatin zymography that, when exposed to ethanol, MCF-7 human breast cancer cells display a higher amount of active metalloproteinases (MMP) 2 and 9 in their culture medium. This increase is somewhat higher than those observed in the case of 17beta-estradiol (E2) exposure. As expected, anti-estrogen ICI 182,780 inhibits the E2-induced overexpression of a well-known estrogen responsive gene, the progesterone receptor, in MCF-7 cells. ICI 182,780 also inhibits the E2-induced increase in MMP-2 and -9 secretion. Nevertheless, in the case of ethanol exposure, this ER ant-agonist was only efficient on MMP-9 secretion. In addition, although MMP-9 transcription was not sensitive to E2 or ethanol, MMP-2 transcription was stimulated in MCF-7 cells exposed to ethanol. Collectively, these results give new insights into the effects of alcohol on breast cancer cell migration, which are not due solely to an estrogen-like activity of alcohol.
Assuntos
Etanol/farmacologia , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Estradiol/análogos & derivados , Estradiol/farmacologia , Moduladores de Receptor Estrogênico/farmacologia , Fulvestranto , Humanos , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 9 da Matriz/genética , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , Receptores de Estrogênio/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacosRESUMO
Amphibians have been widely used to study developmental biology due to the fact that embryo development takes place independently of the maternal organism and that observations and experimental approaches are easy. Some amphibians like Xenopus became model organisms in this field. In the first part of this article, the differentiation of the gonads in amphibians and the mechanisms governing this process are reviewed. In the second part, the state of the art about sex reversal, which can be induced by steroid hormones in general and by temperature in some species, is presented. Also information about pollutants found in the environment that could interfere with the development of the amphibian reproductive apparatus or with their reproductive physiology is given. Such compounds could play a part in the amphibian decline, since in the wild, many amphibians are endangered species.