Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Inherit Metab Dis ; 46(3): 482-519, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36221165

RESUMO

Glutaric aciduria type 1 is a rare inherited neurometabolic disorder of lysine metabolism caused by pathogenic gene variations in GCDH (cytogenic location: 19p13.13), resulting in deficiency of mitochondrial glutaryl-CoA dehydrogenase (GCDH) and, consequently, accumulation of glutaric acid, 3-hydroxyglutaric acid, glutaconic acid and glutarylcarnitine detectable by gas chromatography/mass spectrometry (organic acids) and tandem mass spectrometry (acylcarnitines). Depending on residual GCDH activity, biochemical high and low excreting phenotypes have been defined. Most untreated individuals present with acute onset of striatal damage before age 3 (to 6) years, precipitated by infectious diseases, fever or surgery, resulting in irreversible, mostly dystonic movement disorder with limited life expectancy. In some patients, striatal damage develops insidiously. In recent years, the clinical phenotype has been extended by the finding of extrastriatal abnormalities and cognitive dysfunction, preferably in the high excreter group, as well as chronic kidney failure. Newborn screening is the prerequisite for pre-symptomatic start of metabolic treatment with low lysine diet, carnitine supplementation and intensified emergency treatment during catabolic episodes, which, in combination, have substantially improved neurologic outcome. In contrast, start of treatment after onset of symptoms cannot reverse existing motor dysfunction caused by striatal damage. Dietary treatment can be relaxed after the vulnerable period for striatal damage, that is, age 6 years. However, impact of dietary relaxation on long-term outcomes is still unclear. This third revision of evidence-based recommendations aims to re-evaluate previous recommendations (Boy et al., J Inherit Metab Dis, 2017;40(1):75-101; Kolker et al., J Inherit Metab Dis 2011;34(3):677-694; Kolker et al., J Inherit Metab Dis, 2007;30(1):5-22) and to implement new research findings on the evolving phenotypic diversity as well as the impact of non-interventional variables and treatment quality on clinical outcomes.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Encefalopatias Metabólicas , Humanos , Glutaril-CoA Desidrogenase , Lisina/metabolismo , Encefalopatias Metabólicas/diagnóstico , Encefalopatias Metabólicas/genética , Encefalopatias Metabólicas/terapia , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/terapia , Glutaratos/metabolismo
2.
J Inherit Metab Dis ; 45(6): 1070-1081, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36054426

RESUMO

To prevent maternal phenylketonuria (PKU) syndrome low phenylalanine concentrations (target range, 120-360 µmol/L) during pregnancy are recommended for women with PKU. We evaluated the feasibility and effectiveness of current recommendations and identified factors influencing maternal metabolic control and children's outcome. Retrospective study of first successfully completed pregnancies of 85 women with PKU from 12 German centers using historical data and interviews with the women. Children's outcome was evaluated by standardized IQ tests and parental rating of child behavior. Seventy-four percent (63/85) of women started treatment before conception, 64% (54/85) reached the phenylalanine target range before conception. Pregnancy planning resulted in earlier achievement of the phenylalanine target (18 weeks before conception planned vs. 11 weeks of gestation unplanned, p < 0.001) and lower plasma phenylalanine concentrations during pregnancy, particularly in the first trimester (0-7 weeks of gestation: 247 µmol/L planned vs. 467 µmol/L unplanned, p < 0.0001; 8-12 weeks of gestation: 235 µmol/L planned vs. 414 µmol/L unplanned, p < 0.001). Preconceptual dietary training increased the success rate of achieving the phenylalanine target before conception compared to women without training (19 weeks before conception vs. 9 weeks of gestation, p < 0.001). The majority (93%) of children had normal IQ (mean 103, median age 7.3 years); however, IQ decreased with increasing phenylalanine concentration during pregnancy. Good metabolic control during pregnancy is the prerequisite to prevent maternal PKU syndrome in the offspring. This can be achieved by timely provision of detailed information, preconceptual dietary training, and careful planning of pregnancy.


Assuntos
Fenilcetonúria Materna , Fenilcetonúrias , Gravidez , Criança , Feminino , Humanos , Estudos Retrospectivos , Fenilcetonúria Materna/terapia , Fenilalanina , Dieta , Comportamento Infantil , Síndrome , Resultado da Gravidez
3.
Artigo em Alemão | MEDLINE | ID: mdl-32542434

RESUMO

For many inborn metabolic diseases, a lifelong diet is a crucial part of the therapy since pharmacological therapy is available for only a few conditions and patients. The implementation of a low natural protein diet with a reduced intake of natural protein and the complementary use of synthetic amino acid mixtures is described using the examples of phenylketonuria and urea cycle disorders focusing on children and adolescents. For phenylketonuria, the amino acid supplement is free of phenylalanine whereas for urea cycle disorders, it exclusively consists of essential amino acids. The dietary treatment aims to maintain metabolic stability and to prevent accumulation of toxic metabolites. At the same time, the nutritional requirements to ensure growth and development must be met. Therefore, patients need to follow strict rules regarding the choice of food products. This restrictive therapy interferes with the desire for autonomy and the joy of eating and often results in a reduced quality of life.Following the diet is crucial for a favorable outcome. To meet its requirements, patients and their families are provided with training. It is a great challenge not only to support the patients and their families in all practical aspects of dietary management, but also to motivate them to lifelong adherence in order to ensure the best possible outcome.


Assuntos
Erros Inatos do Metabolismo , Adolescente , Criança , Dieta , Alemanha , Humanos , Fenilcetonúrias , Qualidade de Vida
4.
J Inherit Metab Dis ; 40(1): 75-101, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27853989

RESUMO

Glutaric aciduria type I (GA-I; synonym, glutaric acidemia type I) is a rare inherited metabolic disease caused by deficiency of glutaryl-CoA dehydrogenase located in the catabolic pathways of L-lysine, L-hydroxylysine, and L-tryptophan. The enzymatic defect results in elevated concentrations of glutaric acid, 3-hydroxyglutaric acid, glutaconic acid, and glutaryl carnitine in body tissues, which can be reliably detected by gas chromatography/mass spectrometry (organic acids) and tandem mass spectrometry (acylcarnitines). Most untreated individuals with GA-I experience acute encephalopathic crises during the first 6 years of life that are triggered by infectious diseases, febrile reaction to vaccinations, and surgery. These crises result in striatal injury and consequent dystonic movement disorder; thus, significant mortality and morbidity results. In some patients, neurologic disease may also develop without clinically apparent crises at any age. Neonatal screening for GA-I us being used in a growing number of countries worldwide and is cost effective. Metabolic treatment, consisting of low lysine diet, carnitine supplementation, and intensified emergency treatment during catabolism, is effective treatment and improves neurologic outcome in those individuals diagnosed early; treatment after symptom onset, however, is less effective. Dietary treatment is relaxed after age 6 years and should be supervised by specialized metabolic centers. The major aim of this second revision of proposed recommendations is to re-evaluate the previous recommendations (Kölker et al. J Inherit Metab Dis 30:5-22, 2007b; J Inherit Metab Dis 34:677-694, 2011) and add new research findings, relevant clinical aspects, and the perspective of affected individuals.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/tratamento farmacológico , Encefalopatias Metabólicas/diagnóstico , Encefalopatias Metabólicas/tratamento farmacológico , Glutaril-CoA Desidrogenase/deficiência , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Encefalopatias Metabólicas/metabolismo , Suplementos Nutricionais , Glutaratos/metabolismo , Glutaril-CoA Desidrogenase/metabolismo , Humanos , Lisina/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa