Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 38(4): 937-961, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29229708

RESUMO

There is an ongoing debate on the contribution of the neuronal glutamate transporter EAAC1 to the onset of compulsive behaviors. Here, we used behavioral, electrophysiological, molecular, and viral approaches in male and female mice to identify the molecular and cellular mechanisms by which EAAC1 controls the execution of repeated motor behaviors. Our findings show that, in the striatum, a brain region implicated with movement execution, EAAC1 limits group I metabotropic glutamate receptor (mGluRI) activation, facilitates D1 dopamine receptor (D1R) expression, and ensures long-term synaptic plasticity. Blocking mGluRI in slices from mice lacking EAAC1 restores D1R expression and synaptic plasticity. Conversely, activation of intracellular signaling pathways coupled to mGluRI in D1R-containing striatal neurons of mice expressing EAAC1 leads to reduced D1R protein level and increased stereotyped movement execution. These findings identify new molecular mechanisms by which EAAC1 can shape glutamatergic and dopaminergic signals and control repeated movement execution.SIGNIFICANCE STATEMENT Genetic studies implicate Slc1a1, a gene encoding the neuronal glutamate transporter EAAC1, with obsessive-compulsive disorder (OCD). EAAC1 is abundantly expressed in the striatum, a brain region that is hyperactive in OCD. What remains unknown is how EAAC1 shapes synaptic function in the striatum. Our findings show that EAAC1 limits activation of metabotropic glutamate receptors (mGluRIs) in the striatum and, by doing so, promotes D1 dopamine receptor (D1R) expression. Targeted activation of signaling cascades coupled to mGluRIs in mice expressing EAAC1 reduces D1R expression and triggers repeated motor behaviors. These findings provide new information on the molecular basis of OCD and suggest new avenues for its treatment.


Assuntos
Comportamento Compulsivo/metabolismo , Corpo Estriado/metabolismo , Transportador 3 de Aminoácido Excitatório/metabolismo , Plasticidade Neuronal/fisiologia , Receptores de Glutamato Metabotrópico/metabolismo , Animais , Comportamento Compulsivo/fisiopatologia , Dopamina/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Dopamina D1/metabolismo , Transdução de Sinais/fisiologia
2.
PLoS Comput Biol ; 12(9): e1005115, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27636358

RESUMO

Grooming is a complex and robust innate behavior, commonly performed by most vertebrate species. In mice, grooming consists of a series of stereotyped patterned strokes, performed along the rostro-caudal axis of the body. The frequency and duration of each grooming episode is sensitive to changes in stress levels, social interactions and pharmacological manipulations, and is therefore used in behavioral studies to gain insights into the function of brain regions that control movement execution and anxiety. Traditional approaches to analyze grooming rely on manually scoring the time of onset and duration of each grooming episode, and are often performed on grooming episodes triggered by stress exposure, which may not be entirely representative of spontaneous grooming in freely-behaving mice. This type of analysis is time-consuming and provides limited information about finer aspects of grooming behaviors, which are important to understand movement stereotypy and bilateral coordination in mice. Currently available commercial and freeware video-tracking software allow automated tracking of the whole body of a mouse or of its head and tail, not of individual forepaws. Here we describe a simple experimental set-up and a novel open-source code, named M-Track, for simultaneously tracking the movement of individual forepaws during spontaneous grooming in multiple freely-behaving mice. This toolbox provides a simple platform to perform trajectory analysis of forepaw movement during distinct grooming episodes. By using M-track we show that, in C57BL/6 wild type mice, the speed and bilateral coordination of the left and right forepaws remain unaltered during the execution of distinct grooming episodes. Stress exposure induces a profound increase in the length of the forepaw grooming trajectories. M-Track provides a valuable and user-friendly interface to streamline the analysis of spontaneous grooming in biomedical research studies.


Assuntos
Comportamento Animal/fisiologia , Asseio Animal/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Movimento/fisiologia , Software , Animais , Biologia Computacional , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Gravação em Vídeo
3.
Sci Rep ; 7: 43606, 2017 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-28256580

RESUMO

The G-protein coupled, protease-activated receptor 1 (PAR1) is a membrane protein expressed in astrocytes. Fine astrocytic processes are in tight contact with neurons and blood vessels and shape excitatory synaptic transmission due to their abundant expression of glutamate transporters. PAR1 is proteolytically-activated by bloodstream serine proteases also involved in the formation of blood clots. PAR1 activation has been suggested to play a key role in pathological states like thrombosis, hemostasis and inflammation. What remains unclear is whether PAR1 activation also regulates glutamate uptake in astrocytes and how this shapes excitatory synaptic transmission among neurons. Here we show that, in the mouse hippocampus, PAR1 activation induces a rapid structural re-organization of the neuropil surrounding glutamatergic synapses, which is associated with faster clearance of synaptically-released glutamate from the extracellular space. This effect can be recapitulated using realistic 3D Monte Carlo reaction-diffusion simulations, based on axial scanning transmission electron microscopy (STEM) tomography reconstructions of excitatory synapses. The faster glutamate clearance induced by PAR1 activation leads to short- and long-term changes in excitatory synaptic transmission. Together, these findings identify PAR1 as an important regulator of glutamatergic signaling in the hippocampus and a possible target molecule to limit brain damage during hemorrhagic stroke.


Assuntos
Astrócitos/metabolismo , Ácido Glutâmico/metabolismo , Receptor PAR-1/agonistas , Algoritmos , Animais , Astrócitos/ultraestrutura , Transporte Biológico , Feminino , Hipocampo/metabolismo , Hipocampo/ultraestrutura , Imageamento Tridimensional , Potenciação de Longa Duração , Masculino , Camundongos , Modelos Biológicos , Método de Monte Carlo , Neurônios/metabolismo , Receptores de AMPA/metabolismo , Potenciais Sinápticos , Transmissão Sináptica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa