RESUMO
Sunlight, despite its benefits, can pose a threat to the skin, which is a natural protective barrier. Phototoxicity caused by overexposure, especially to ultraviolet radiation (UVR), results in burns, accelerates photoaging, and causes skin cancer formation. Natural substances of plant origin, i.e., polyphenols, flavonoids, and photosynthetic pigments, can protect the skin against the effects of radiation, acting not only as photoprotectors like natural filters but as antioxidant and anti-inflammatory remedies, alleviating the effects of photodamage to the skin. Plant-based formulations are gaining popularity as an attractive alternative to synthetic filters. Over the past 20 years, a large number of studies have been published to assess the photoprotective effects of natural plant products, primarily through their antioxidant, antimutagenic, and anti-immunosuppressive activities. This review selects the most important data on skin photodamage and photoprotective efficacy of selected plant carotenoid representatives from in vivo studies on animal models and humans, as well as in vitro experiments performed on fibroblast and keratinocyte cell lines. Recent research on carotenoids associated with lipid nanoparticles, nanoemulsions, liposomes, and micelles is reviewed. The focus was on collecting those nanomaterials that serve to improve the bioavailability and stability of carotenoids as natural antioxidants with photoprotective activity.
Assuntos
Neoplasias Cutâneas , Raios Ultravioleta , Animais , Humanos , Raios Ultravioleta/efeitos adversos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Pele/metabolismo , Queratinócitos , Carotenoides/farmacologia , Carotenoides/metabolismo , Neoplasias Cutâneas/metabolismo , Protetores Solares/farmacologiaRESUMO
Non-alcoholic fatty liver disease (NAFLD) is a condition in which the pathological cumulation of fat with coexisting inflammation and damage of hepatic cells leads to progressive dysfunctions of the liver. Except for the commonly well-known major causes of NAFLD such as obesity, dyslipidemia, insulin resistance, or diabetes, an unbalanced diet and imbalanced nutritional status should also be taken into consideration. In this narrative review, we summarized the current knowledge regarding the micro- and macronutrient status of patients suffering from NAFLD considering various diets and supplementation of chosen supplements. We aimed to summarize the knowledge indicating which nutritional impairments may be associated with the onset and progression of NAFLD at the same time evaluating the potential therapy targets that could facilitate the healing process. Except for the above-mentioned objectives, one of the most important aspects of this review was to highlight the possible strategies for taking care of NAFLD patients taking into account the challenges and opportunities associated with the micronutrient status of the patients. The current research indicates that a supplementation of chosen vitamins (e.g., vitamin A, B complex, C, or D) as well as chosen elements such as zinc may alleviate the symptoms of NAFLD. However, there is still a lack of sufficient data regarding healthy ranges of dosages; thus, further research is of high importance in this matter.
Assuntos
Suplementos Nutricionais , Micronutrientes , Hepatopatia Gordurosa não Alcoólica , Nutrientes , Humanos , Micronutrientes/metabolismo , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/dietoterapia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Nutrientes/metabolismo , Estado Nutricional , Vitaminas/metabolismo , Vitaminas/administração & dosagemRESUMO
Endometrial cancer is reported to be one of the most prevalent cancers of the female reproductive organs worldwide, with increasing incidence and mortality rates over the past decade. Early diagnosis is critical for effective treatment. Recently, there has been a growing focus on the role of nutrition and micronutrient and macronutrient status in patients with gynecologic cancers, including endometrial cancer. In the following paper, we have conducted an in-depth narrative literature review with the aim of evaluating the results of metallomic studies specifically concerning the micro- and macronutrient status of patients with endometrial cancer. The main objective of the paper was to analyze the results regarding the nutritional status of endometrial cancer patients and describe the role of chosen elements in the onset and progression of endometrial carcinogenesis. Further, we have focused on the evaluation of the usage of the described elements in the potential treatment of the abovementioned cancer, as well as the possible prevention of cancer considering proper supplementation of chosen elements in healthy individuals. Calcium supplementation has been proposed to reduce the risk of endometrial cancer, although some studies offer conflicting evidence. Deficiencies in phosphorus, selenium, and zinc have been inversely associated with endometrial cancer risk, suggesting they may play a protective role, whereas excessive levels of iron, copper, and cadmium have been positively correlated with increased risk. However, the molecular mechanisms by which these elements affect endometrial carcinogenesis are not fully understood, and current findings are often contradictory. Further research is needed to clarify these relationships and to evaluate the potential of nutritional interventions for the prevention and treatment of endometrial cancer.
Assuntos
Neoplasias do Endométrio , Micronutrientes , Nutrientes , Humanos , Neoplasias do Endométrio/metabolismo , Feminino , Estado NutricionalRESUMO
Alzheimer's disease (AD) is characterized by, among other things, dementia and a decline in cognitive performance. In AD, dementia has neurodegenerative features and starts with mild cognitive impairment (MCI). Research indicates that apoptosis and neuronal loss occur in AD, in which oxidative stress plays an important role. Therefore, reducing oxidative stress with antioxidants is a natural strategy to prevent and slow down the progression of AD. Carotenoids are natural pigments commonly found in fruits and vegetables. They include lipophilic carotenes, such as lycopene, α- and ß-carotenes, and more polar xanthophylls, for example, lutein, zeaxanthin, canthaxanthin, and ß-cryptoxanthin. Carotenoids can cross the blood-brain barrier (BBB) and scavenge free radicals, especially singlet oxygen, which helps prevent the peroxidation of lipids abundant in the brain. As a result, carotenoids have neuroprotective potential. Numerous in vivo and in vitro studies, as well as randomized controlled trials, have mostly confirmed that carotenoids can help prevent neurodegeneration and alleviate cognitive impairment in AD. While carotenoids have not been officially approved as an AD therapy, they are indicated in the diet recommended for AD, including the consumption of products rich in carotenoids. This review summarizes the latest research findings supporting the potential use of carotenoids in preventing and alleviating AD symptoms. A literature review suggests that a diet rich in carotenoids should be promoted to avoid cognitive decline in AD. One of the goals of the food industry should be to encourage the enrichment of food products with functional substances, such as carotenoids, which may reduce the risk of neurodegenerative diseases.
Assuntos
Doença de Alzheimer , Carotenoides , Suplementos Nutricionais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/prevenção & controle , Humanos , Carotenoides/uso terapêutico , Carotenoides/farmacologia , Animais , Antioxidantes/uso terapêutico , Antioxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/prevenção & controle , Disfunção Cognitiva/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/farmacologiaRESUMO
In recent years, there has been a growing interest in plant pigments as readily available nutraceuticals. Photosynthetic pigments, specifically chlorophylls and carotenoids, renowned for their non-toxic antioxidant properties, are increasingly finding applications beyond their health-promoting attributes. Consequently, there is an ongoing need for cost-effective methods of isolation. This study employs a co-precipitation method to synthesize magnetic iron oxide nanoparticles. Scanning electron microscopy (SEM) coupled with energy dispersive spectrometry (EDS) confirms that an aqueous environment and oxidizing conditions yield nanosized iron oxide with particle sizes ranging from 80 to 140 nm. X-ray photoelectron spectroscopy (XPS) spectra indicate the presence of hydrous iron oxide FeO(OH) on the surface of the nanosized iron oxide. The Brunauer-Emmett-Teller (BET) surface area of obtained nanomaterial was 151.4 m2 g-1, with total pore volumes of pores 0.25 cm3 g-1 STP. The material, designated as iron oxide nanoparticles (IONPs), serves as an adsorbent for magnetic solid phase extraction (MSPE) and isolation of photosynthetic pigments (chlorophyll a, lutein) from extracts of higher green plants (Mentha piperita L., Urtica dioica L.). Sorption of chlorophyll a onto the nanoparticles is confirmed using UV-vis spectroscopy, Fourier transform infrared photoacoustic spectroscopy (FT-IR/PAS), and high-performance liquid chromatography (HPLC). Selective sorption of chlorophyll a requires a minimum of 3 g of IONPs per 12 mg of chlorophyll a, with acetone as the solvent, and is dependent on a storage time of 48 h. Extended contact time of IONPs with the acetone extract, i.e., 72 h, ensures the elimination of remaining components except lutein, with a spectral purity of 98%, recovered with over 90% efficiency. The mechanism of chlorophyll removal using IONPs relies on the interaction of the pigment's carbonyl (C=O) groups with the adsorbent surface hydroxyl (-OH) groups. Based on molecular dynamics (MD) simulations, it has been proven that the selective adsorption of pigments is also influenced by more favorable dispersion interactions between acetone and chlorophyll in comparison with other solutes. An aqueous environment significantly promotes the removal of pigments; however, it results in a complete loss of selectivity.
Assuntos
Compostos Férricos , Luteína , Extratos Vegetais , Extratos Vegetais/química , Clorofila A , Clorofila , Espectroscopia de Infravermelho com Transformada de Fourier , Acetona , Água , Adsorção , Extração em Fase Sólida/métodos , Nanopartículas Magnéticas de Óxido de Ferro , Fenômenos MagnéticosRESUMO
The techniques used to detect and quantify cyanocobalamin (vitamin B12) vary considerably in terms of detection sensitivity, from the most sensitive, based on radioisotopes and mass spectrometry (MS) with limits of detection (LOD) in fg mL-1, to fluorescence (FL) and surface plasmon resonance (SPR) biosensors with LOD values in the range of a few µg mL-1. For accurate quantification of an analyte present at trace levels in complex biological matrices, a selective separation and enrichment step is required to overcome matrix interferences and ensure sufficient detection sensitivity. In this study, iron oxide magnetic nanoparticles (IONPs) were used for the extraction and initial preconcentration of cyanocobalamin (vitamin B12). In the dependence of the magnetization on the H-field (hysteresis loop), no coercivity and remanence values were found at 300 K, indicating the superparamagnetic properties of the tested IONPs. Perfluorinated acids were used as amphiphilic agents to allow the sorption of cyanocobalamin onto the IONPs. FT-IR/ATR spectroscopy was used to confirm the sorption of cyanocobalamin on the IONPs. The influence of the addition of a homologous series of perfluorinated acids such as trifluoroacetic acid (TFAA), heptafluorobutyric acid (HFBA), and trichloroacetic acid (TCAA) to the extraction mixture was tested considering their type, mass, and time required for effective sorption. The adsorption kinetics and isotherm, described by the Freundlich and Langmuir equations, were analyzed. The maximum adsorption capacity (qm) exceeded 6 mg g-1 and was 8.9 mg g-1 and 7.7 mg g-1 for HFBA and TCAA, respectively, as the most efficient additives. After the desorption process using aqueous KH2PO4 solution, the sample was finally analyzed spectrophotometrically and chromatographically. The IONP-based method was successfully applied for the isolation of cyanocobalamin from human urine samples. The results showed that the developed approach is simple, cheap, accurate, and efficient for the determination of traces of cyanocobalamin in biological matrices.
Assuntos
Nanopartículas Magnéticas de Óxido de Ferro , Vitamina B 12 , Vitamina B 12/química , Vitamina B 12/análise , Adsorção , Nanopartículas Magnéticas de Óxido de Ferro/química , Limite de Detecção , Porosidade , Espectroscopia de Infravermelho com Transformada de FourierRESUMO
According to the World Health Organization (WHO), around 11 million people suffer from burns every year, and 180,000 die from them. A burn is a condition in which heat, chemical substances, an electrical current or other factors cause tissue damage. Burns mainly affect the skin, but can also affect deeper tissues such as bones or muscles. When burned, the skin loses its main functions, such as protection from the external environment, pathogens, evaporation and heat loss. Depending on the stage of the burn, the patient's condition and the cause of the burn, we need to choose the most appropriate treatment. Personalization and multidisciplinary collaboration are key to the successful management of burn patients. In this comprehensive review, we have collected and discussed the available treatment options, focusing on recent advances in topical treatments, wound cleansing, dressings, skin grafting, nutrition, pain and scar tissue management.
Assuntos
Queimaduras , Cicatrização , Humanos , Pele , Transplante de Pele , Bandagens , Queimaduras/cirurgiaRESUMO
The multifactorial etiology of major depressive disorder (MDD) includes biological, environmental, genetic, and psychological aspects. Recently, there has been an increasing interest in metallomic studies in psychiatry, aiming to evaluate the role of chosen trace elements in the MDD etiology as well as the progression of symptoms. This narrative review aims to summarize the available literature on the relationship between the concentration of chosen elements in the serum of patients with MDD and the onset and progression of this psychiatric condition. The authors reviewed PubMed, Web of Science, and Scopus databases searching for elements that had been investigated so far and further evaluated them in this paper. Ultimately, 15 elements were evaluated, namely, zinc, magnesium, selenium, iron, copper, aluminium, cadmium, lead, mercury, arsenic, calcium, manganese, chromium, nickel, and phosphorus. The association between metallomic studies and psychiatry has been developing dynamically recently. According to the results of current research, metallomics might act as a potential screening tool for patients with MDD while at the same time providing an assessment of the severity of symptoms. Either deficiencies or excessive amounts of chosen elements might be associated with the progression of depressive symptoms or even the onset of the disease among people predisposed to MDD.
Assuntos
Transtorno Depressivo Maior , Selênio , Oligoelementos , Humanos , Zinco , Cobre , Cromo , CádmioRESUMO
Manganese (Mn) is an essential trace element with unique functions in the body; it acts as a cofactor for many enzymes involved in energy metabolism, the endogenous antioxidant enzyme systems, neurotransmitter production, and the regulation of reproductive hormones. However, overexposure to Mn is toxic, particularly to the central nervous system (CNS) due to it causing the progressive destruction of nerve cells. Exposure to manganese is widespread and occurs by inhalation, ingestion, or dermal contact. Associations have been observed between Mn accumulation and neurodegenerative diseases such as manganism, Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. People with genetic diseases associated with a mutation in the gene associated with impaired Mn excretion, kidney disease, iron deficiency, or a vegetarian diet are at particular risk of excessive exposure to Mn. This review has collected data on the current knowledge of the source of Mn exposure, the experimental data supporting the dispersive accumulation of Mn in the brain, the controversies surrounding the reference values of biomarkers related to Mn status in different matrices, and the competitiveness of Mn with other metals, such as iron (Fe), magnesium (Mg), zinc (Zn), copper (Cu), lead (Pb), calcium (Ca). The disturbed homeostasis of Mn in the body has been connected with susceptibility to neurodegenerative diseases, fertility, and infectious diseases. The current evidence on the involvement of Mn in metabolic diseases, such as type 2 diabetes mellitus/insulin resistance, osteoporosis, obesity, atherosclerosis, and non-alcoholic fatty liver disease, was collected and discussed.
Assuntos
Diabetes Mellitus Tipo 2 , Intoxicação por Manganês , Doenças Neurodegenerativas , Humanos , Manganês/toxicidade , Manganês/metabolismo , Intoxicação por Manganês/metabolismo , HomeostaseRESUMO
Aluminium (Al) is the most ubiquitous metal in the Earth's crust. Even though its toxicity is well-documented, the role of Al in the pathogenesis of several neurological diseases remains debatable. To establish the basic framework for future studies, we review literature reports on Al toxicokinetics and its role in Alzheimer's disease (AD), autism spectrum disorder (ASD), alcohol use disorder (AUD), multiple sclerosis (MS), Parkinson's disease (PD), and dialysis encephalopathy (DE) from 1976 to 2022. Despite poor absorption via mucosa, the biggest amount of Al comes with food, drinking water, and inhalation. Vaccines introduce negligible amounts of Al, while the data on skin absorption (which might be linked with carcinogenesis) is limited and requires further investigation. In the above-mentioned diseases, the literature shows excessive Al accumulation in the central nervous system (AD, AUD, MS, PD, DE) and epidemiological links between greater Al exposition and their increased prevalence (AD, PD, DE). Moreover, the literature suggests that Al has the potential as a marker of disease (AD, PD) and beneficial results of Al chelator use (such as cognitive improvement in AD, AUD, MS, and DE cases).
Assuntos
Doença de Alzheimer , Transtorno do Espectro Autista , Esclerose Múltipla , Doença de Parkinson , Humanos , Alumínio/toxicidade , Transtorno do Espectro Autista/patologia , Encéfalo/patologia , Doença de Alzheimer/patologia , Sistema Nervoso Central/patologia , Doença de Parkinson/patologia , Esclerose Múltipla/patologiaRESUMO
Phytogenically synthesised nanoparticle (NP)-based drug delivery systems have promising potential in the field of biopharmaceuticals. From the point of view of biomedical applications, such systems offer the small size, high surface area, and possible synergistic effects of NPs with embedded biomolecules. This article describes the synthesis of silver nanoparticles (Ag-NPs) using extracts from the flowers and leaves of tansy (Tanacetum vulgare L.), which is known as a remedy for many health problems, including cancer. The reducing power of the extracts was confirmed by total phenolic and flavonoid content and antioxidant tests. The Ag-NPs were characterised by various analytical techniques including UV-vis spectroscopy, scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS), Fourier transform infrared (FT-IR) spectroscopy, and a dynamic light scattering (DLS) system. The obtained Ag-NPs showed higher cytotoxic activity than the initial extracts against both human cervical cancer cell lines HeLa (ATCC CCL-2) and human melanoma cell lines A375 and SK-MEL-3 by MTT assay. However, the high toxicity to Vero cell culture (ATCC CCL-81) and human fibroblast cell line WS-1 rules out the possibility of their use as anticancer agents. The plant-mediated Ag-NPs were mostly bactericidal against tested strains with MBC/MIC index ≤4. Antifungal bioactivity (C. albicans, C. glabrata, and C. parapsilosis) was not observed for aqueous extracts (MIC > 8000 mg L-1), but Ag-NPs synthesised using both the flowers and leaves of tansy were very potent against Candida spp., with MIC 15.6 and 7.8 µg mL-1, respectively.
Assuntos
Anti-Infecciosos , Antineoplásicos , Nanopartículas Metálicas , Humanos , Prata/farmacologia , Prata/química , Espectroscopia de Infravermelho com Transformada de Fourier , Nanopartículas Metálicas/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Antineoplásicos/farmacologia , Testes de Sensibilidade MicrobianaRESUMO
Nanomaterials (NM) arouse interest in various fields of science and industry due to their composition-tunable properties and the ease of modification. They appear currently as components of many consumer products such as sunscreen, dressings, sports clothes, surface-cleaning agents, computer devices, paints, as well as pharmaceutical and cosmetics formulations. The use of NPs in products for topical applications improves the permeation/penetration of the bioactive compounds into deeper layers of the skin, providing a depot effect with sustained drug release and specific cellular and subcellular targeting. Nanocarriers provide advances in dermatology and systemic treatments. Examples are a non-invasive method of vaccination, advanced diagnostic techniques, and transdermal drug delivery. The mechanism of action of NPs, efficiency of skin penetration, and potential threat to human health are still open and not fully explained. This review gives a brief outline of the latest nanotechnology achievements in products used in topical applications to prevent and treat skin diseases. We highlighted aspects such as the penetration of NPs through the skin (influence of physical-chemical properties of NPs, the experimental models for skin penetration, methods applied to improve the penetration of NPs through the skin, and methods applied to investigate the skin penetration by NPs). The review summarizes various therapies using NPs to diagnose and treat skin diseases (melanoma, acne, alopecia, vitiligo, psoriasis) and anti-aging and UV-protectant nano-cosmetics.
Assuntos
Cosméticos , Nanopartículas , Dermatopatias , Humanos , Pele , Dermatopatias/tratamento farmacológico , Nanopartículas/química , Cosméticos/química , Administração Cutânea , Sistemas de Liberação de Medicamentos , Preparações FarmacêuticasRESUMO
In this study, ionic liquids were used for the selective extraction/isolation of hemoglobin from human serum for cotinine determination using the ELISA Kit. The suitability of hydrophobic imidazolium-based ionic liquids was tested, of which OMIM BF4 (1-methyl-3-octylimidazolium tetrafluoroborate) turned out to be the most suitable for direct extraction of hemoglobin into an ionic liquid without the use of any additional reagent at one extraction step. Hemoglobin was separated quantitatively (95% recovery) from the remaining types of proteins remaining in the aqueous phase. Quantum mechanical calculations showed that the interaction of the iron atom in the heme group and the nitrogen atom of the ionic liquid cation is responsible for the transfer of hemoglobin whereas molecular dynamics simulations demonstrated that the non-covalent interactions between heme and solvent are more favorable in the case of OMIM BF4 in comparison to water. The opposite trend was found for cotinine. Selective isolation of the heme/hemoglobin improved the ELISA test's accuracy, depending on the cotinine level, from 15% to 30%.
Assuntos
Heme , Líquidos Iônicos , Humanos , Cotinina , Hemoglobinas , Ensaio de Imunoadsorção Enzimática , ÁguaRESUMO
The routine techniques currently applied for the determination of nicotine and its major metabolites, cotinine, and trans-3'-hydroxycotinine, in biological fluids, include spectrophotometric, immunoassays, and chromatographic techniques. The aim of this study was to develop, and compare two new chromatographic methods high-performance liquid chromatography coupled to triple quadrupole mass spectrometry (HPLC-QQQ-MS/MS), and RP-HPLC enriched with chaotropic additives, which would allow reliable confirmation of tobacco smoke exposure in toxicological and epidemiological studies. The concentrations of analytes were determined in human plasma as the sample matrix. The methods were compared in terms of the linearity, accuracy, repeatability, detection and quantification limits (LOD and LOQ), and recovery. The obtained validation parameters met the ICH requirements for both proposed procedures. However, the limits of detection (LOD) were much better for HPLC-QQQ-MS/MS (0.07 ng mL-1 for trans-3'-hydroxcotinine; 0.02 ng mL-1 for cotinine; 0.04 ng mL-1 for nicotine) in comparison to the RP-HPLC-DAD enriched with chaotropic additives (1.47 ng mL-1 for trans-3'-hydroxcotinine; 1.59 ng mL-1 for cotinine; 1.50 ng mL-1 for nicotine). The extraction efficiency (%) was concentration-dependent and ranged between 96.66% and 99.39% for RP-HPLC-DAD and 76.8% to 96.4% for HPLC-QQQ-MS/MS. The usefulness of the elaborated analytical methods was checked on the example of the analysis of a blood sample taken from a tobacco smoker. The nicotine, cotinine, and trans-3'-hydroxycotinine contents in the smoker's plasma quantified by the RP-HPLC-DAD method differed from the values measured by the HPLC-QQQ-MS/MS. However, the relative errors of measurements were smaller than 10% (6.80%, 6.72%, 2.04% respectively).
Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida/métodos , Cotinina/análogos & derivados , Cotinina/sangue , Nicotina/sangue , Fumar/sangue , Espectrometria de Massas em Tandem/métodos , Humanos , Limite de Detecção , Polônia/epidemiologia , Fumar/epidemiologiaRESUMO
Metals perform many important physiological functions in the human body. The distribution of elements in different tissues is not uniform. Moreover, some structures can be the site of an accumulation of essential or toxic metals, leading to multi-directional intracellular damage. In the nervous system, these disorders are especially dangerous. Metals dyshomeostasis has been linked to a variety of neurological disorders which end up leading to permanent injuries. The multi-elemental composition of the human brain is still the subject of numerous investigations and debates. In this study, for the first time, the meninges, i.e., the dura mater and the arachnoid, were examined for their elemental composition by means of inductively coupled plasma mass spectrometry (ICP-MS). Tissue samples were collected post mortem from those who died suddenly as a result of suicide (n = 20) or as a result of injuries after an accident (n = 20). The interactions between 51 elements in both groups showed mainly weak positive correlations, which dominated the arachnoid mater compared to the dura mater. The study showed differences in the distribution of some elements within the meninges in the studied groups. The significant differences concerned mainly metals from the lanthanide family (Ln), macroelements (Na, K, Ca, Mg), a few micronutrients (Co), and toxic cadmium (Cd). The performed evaluation of the elemental distribution in the human meninges sheds new light on the trace metals metabolism in the central nervous system, although we do not yet fully understand the role of the human meninges.
Assuntos
Oligoelementos , Morte Súbita , Humanos , Meninges/química , Polônia , Análise Espectral , Oligoelementos/análiseRESUMO
About 70 million people suffer from epilepsy-a chronic neurodegenerative disease. In most cases, the cause of the disease is unknown, but epilepsy can also develop as the result of a stroke, trauma to the brain, or the use of psychotropic substances. The treatment of epilepsy is mainly based on the administration of anticonvulsants, which the patient must most often use throughout their life. Despite significant progress in research on antiepileptic drugs, about 30% of patients still have drug-resistant epilepsy, which is insensitive to pharmacotherapy used so far. In our recent studies, we have shown that 4-alkyl-5-aryl-1,2,4-triazole-3-thiones act on the voltage-gated sodium channels and exhibit anticonvulsant activity in an MES (maximal electroshock-induced seizure) and 6Hz test in mice. Previous studies have shown their beneficial toxic and pharmacological profile, but their effect on a living organism during chronic use is still unknown. In the presented study, on the basis of the previously conducted tests and the PAMPA (parallel artificial membrane permeability assay) BBB (blood-brain barrier) test, we selected one 1,2,4-triazole-3-thione derivative-TP-315-for further studies aimed at assessing the impact of its chronic use on a living organism. After long-term administration of TP-315 to Albino Swiss mice, its effect on the functional parameters of internal organs was assessed by performing biochemical, morphological, and histopathological examinations. It was also determined whether the tested compound inhibits selected isoforms of the CYP450 enzyme system. On the basis of the conducted tests, it was found that TP-315 does not show nephrotoxic nor hepatotoxic effects and does not cause changes in hematological parameters. In vitro tests showed that TP-315 did not inhibit CYP2B6, CYP2D6, CYP3A4, or CYP3A5 enzymes at the concentration found in the serum of mice subjected to long-term exposure to this compound.
Assuntos
Anticonvulsivantes/administração & dosagem , Barreira Hematoencefálica/efeitos dos fármacos , Doenças Neurodegenerativas/metabolismo , Triazóis/administração & dosagem , Animais , Sistema Enzimático do Citocromo P-450 , Eletrochoque , Rim/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Permeabilidade , Isoformas de Proteínas , Convulsões/metabolismoRESUMO
The aim of the study was the multi-elemental analysis of aqueous humor (AH) collected from patients undergoing cataract surgery. The study included: 16 patients with age-related macular degeneration AMD (99 controls), 10 patients with retinopathy (105 controls), 61 patients with hypertension (54 controls), and 33 patients with coexisting diabetes (82 controls). The control groups were recruited from patients with a lack of co-existing disease characterizing the specified studied group. The measurements were performed by the use of inductively coupled plasma optical emission spectrometry (ICP-OES). The statistical analysis was carried out using non-parametric testing (Mann-Whitney U). The level of significance was set at p = 0.05. The data obtained revealed substantial variations in elemental composition between the test groups in comparison to the controls. However, the significant variations concerned only a few elements. The phosphorous (P) level and the ratio of P/Ca were significant in retinopathy and diabetes, whereas cobalt (0.091 ± 0.107 mg/L vs. 0.031 ± 0.075 mg/L; p = 0.004) was significant in AMD. In co-existing hypertension, the levels of tin (0.293 ± 0.409 mg/L vs. 0.152 ± 0.3 mg/L; p = 0.031), titanium (0.096 ± 0.059 mg/L vs. 0.152 ± 0.192 mg/L; p = 0.045), and ruthenium (0.035 ± 0.109 mg/L vs. 0.002 ± 0.007 mg/L; p = 0.006) varied in comparison to the controls. The study revealed inter-elemental interactions. The correlation matrices demonstrated the domination of the positive correlations, whereas negative correlations mainly concerned sodium.
Assuntos
Humor Aquoso/metabolismo , Catarata/metabolismo , Diabetes Mellitus/fisiopatologia , Retinopatia Diabética/fisiopatologia , Elementos Químicos , Hipertensão/fisiopatologia , Degeneração Macular/fisiopatologia , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Catarata/epidemiologia , Catarata/patologia , Catarata/terapia , Extração de Catarata , Feminino , Seguimentos , Humanos , Cristalino/cirurgia , Masculino , Pessoa de Meia-Idade , Polônia/epidemiologia , PrognósticoRESUMO
Natural extracts are a rich source of biomolecules that are useful not only as antioxidant drugs or diet supplements but also as complex reagents for the biogenic synthesis of metallic nanoparticles. The natural product components can act as strong reducing and capping substrates guaranteeing the stability of formed NPs. The current work demonstrates the suitability of extracts of Camellia sinensis, Ilex paraguariensis, Salvia officinalis, Tilia cordata, Levisticum officinale, Aegopodium podagraria, Urtica dioica, Capsicum baccatum, Viscum album, and marine algae Porphyra Yezoensis for green synthesis of AgNPs. The antioxidant power of methanolic extracts was estimated at the beginning according to their free radical scavenging activity by the DPPH method and reducing power activity by CUPRAC and SNPAC (silver nanoparticle antioxidant capacity) assays. The results obtained by the CUPRAC and SNAPC methods exhibited excellent agreement (R2~0.9). The synthesized AgNPs were characterized by UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), dynamic light scattering (DLS) particle size, and zeta potential. The UV-vis absorption spectra showed a peak at 423 nm confirming the presence of AgNPs. The shapes of extract-mediated AgNPs were mainly spherical, spheroid, rod-shaped, agglomerated crystalline structures. The NPs exhibited a high negative zeta potential value in the range from -49.8 mV to -56.1 mV, proving the existence of electrostatic stabilization. FTIR measurements indicated peaks corresponding to different functional groups such as carboxylic acids, alcohol, phenol, esters, ethers, aldehydes, alkanes, and proteins, which were involved in the synthesis and stabilization of AgNPs. Among the examined extracts, green tea showed the highest activity in all antioxidant tests and enabled the synthesis of the smallest nanoparticles, namely 62.51, 61.19, and 53.55 nm, depending on storage times of 30 min, 24 h, and 72 h, respectively. In turn, the Capsicum baccatum extract was distinguished by the lowest zeta potential, decreasing with storage time from -66.0 up to -88.6 mM.
Assuntos
Antioxidantes/síntese química , Antioxidantes/farmacologia , Nanopartículas Metálicas , Extratos Vegetais/química , Prata/química , Prata/farmacologia , Antioxidantes/química , Compostos de Bifenilo/química , Técnicas de Química Sintética , Química Verde , Picratos/químicaRESUMO
In the past two decades, increased production and usage of metallic nanoparticles (NPs) have inevitably increased their discharge into the different compartments of the environment, which ultimately paved the way for their uptake and accumulation in various trophic levels of the food chain. Due to these issues, several questions have been raised on the usage of NPs in everyday life and have become a matter of public health concern. Among the metallic NPs, Cu-based NPs have gained popularity due to their cost-effectiveness and multifarious promising uses. Several studies in the past represented the phytotoxicity of Cu-based NPs on plants. However, comprehensive knowledge is still lacking. Additionally, the impact of Cu-based NPs on soil organisms such as agriculturally important microbes, fungi, mycorrhiza, nematode, and earthworms is poorly studied. This review article critically analyses the literature data to achieve a more comprehensive knowledge on the toxicological profile of Cu-based NPs and increase our understanding of the effects of Cu-based NPs on aquatic and terrestrial plants as well as on soil microbial communities. The underlying mechanism of biotransformation of Cu-based NPs and the process of their penetration into plants have also been discussed herein. Overall, this review could provide valuable information to design rules and regulations for the safe disposal of Cu-based NPs into a sustainable environment.
Assuntos
Cobre , Poluentes Ambientais , Nanopartículas Metálicas , Animais , Cadeia Alimentar , Oligoquetos , SoloRESUMO
Ionic liquids (ILs) are solvents with salt structures. Typically, they contain organic cations (ammonium, imidazolium, pyridinium, piperidinium or pyrrolidinium), and halogen, fluorinated or organic anions. While ILs are considered to be environmentally-friendly compounds, only a few reasons support this claim. This is because of high thermal stability, and negligible pressure at room temperature which makes them non-volatile, therefore preventing the release of ILs into the atmosphere. The expansion of the range of applications of ILs in many chemical industry fields has led to a growing threat of contamination of the aquatic and terrestrial environments by these compounds. As the possibility of the release of ILs into the environment s grow systematically, there is an increasing and urgent obligation to determine their toxic and antimicrobial influence on the environment. Many bioassays were carried out to evaluate the (eco)toxicity and biodegradability of ILs. Most of them have questioned their "green" features as ILs turned out to be toxic towards organisms from varied trophic levels. Therefore, there is a need for a new biodegradable, less toxic "greener" ILs. This review presents the potential risks to the environment linked to the application of ILs. These are the following: cytotoxicity evaluated by the use of human cells, toxicity manifesting in aqueous and terrestrial environments. The studies proving the relation between structures versus toxicity for ILs with special emphasis on directions suitable for designing safer ILs synthesized from renewable sources are also presented. The representants of a new generation of easily biodegradable ILs derivatives of amino acids, sugars, choline, and bicyclic monoterpene moiety are collected. Some benefits of using ILs in medicine, agriculture, and the bio-processing industry are also presented.