Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chembiochem ; 24(3): e202200487, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36178424

RESUMO

Biochemical studies of integral membrane proteins are often hampered by low purification yields and technical limitations such as aggregation causing in vitro manipulations to be challenging. The ability of controlling proteins in live cells bypasses these limitations while broadening the scope of accessible questions owing to the proteins being in their native environment. Here we take advantage of the intein biorthogonality to mammalian systems, site specificity, fast kinetics, and auto-processing nature as an attractive option for modifying surface proteins. Using EGFR as a model, we demonstrate that the split-intein pair AvaN /NpuC can be used to efficiently and specifically modify target membrane proteins with a synthetic adduct for downstream live cell application.


Assuntos
Inteínas , Processamento de Proteína , Animais , Proteínas de Membrana , Mamíferos
2.
bioRxiv ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38313255

RESUMO

The Human Silencing Hub (HuSH) complex is composed of TASOR, MPP8, and PPHLN1 subunits and serves as a conserved protein complex responsible for silencing transposable elements in vertebrate animals. Despite its importance, the regulatory mechanisms and recruitment dynamics governing this complex remain poorly understood. In this study, we have identified a second HuSH complex, termed HuSH2, centered around TASOR2, a paralog of the core TASOR protein in HuSH. Our findings indicate that every subunit in both HuSH and HuSH2 has an important role in achieving precise genomic localization to distinct, non-overlapping genomic loci. We utilized in silico protein structure prediction to simulate the interactions between MPP8 and both TASOR paralogs. Drawing on the insights gained from these predictions, we implemented amino acid substitutions that interfered with the binding of MPP8 to each HuSH complex. Leveraging these MPP8 transgenes and other constructs, we identified an important role played by the relative quantities of HuSH complexes in controlling the activity of LINE-1 elements. Furthermore, our results suggest that dynamic changes in TASOR and TASOR2 expression enable cells to finely tune the extent of HuSH-mediated silencing. Our study provides insights into the intricate interplay between HuSH complexes, illuminating their important role in the regulation of retrotransposon silencing.

3.
Nat Commun ; 13(1): 7279, 2022 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-36435807

RESUMO

Forkhead box H1 (FoxH1) is an essential maternal pioneer factor during embryonic development that binds to specific GG/GT-containing DNA target sequences. Here we have determined high-resolution structures of three FoxH1 proteins (from human, frog and fish species) and four DNAs to clarify the way in which FoxH1 binds to these sites. We found that the protein-DNA interactions extend to both the minor and major DNA grooves and are thus almost twice as extensive as those of other FOX family members. Moreover, we identified two specific amino acid changes in FoxH1 that allowed the recognition of GG/GT motifs. Consistent with the pioneer factor activity of FoxH1, we found that its affinity for nucleosomal DNA is even higher than for linear DNA fragments. The structures reported herein illustrate how FoxH1 binding to distinct DNA sites provides specificity and avoids cross-regulation by other FOX proteins that also operate during the maternal-zygotic transition and select canonical forkhead sites.


Assuntos
DNA , Regulação da Expressão Gênica , Animais , Humanos , DNA/química , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Sequência de Bases , Desenvolvimento Embrionário
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa