Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 502(7473): 672-6, 2013 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-24172979

RESUMO

The biogeochemical cycles of carbon (C), nitrogen (N) and phosphorus (P) are interlinked by primary production, respiration and decomposition in terrestrial ecosystems. It has been suggested that the C, N and P cycles could become uncoupled under rapid climate change because of the different degrees of control exerted on the supply of these elements by biological and geochemical processes. Climatic controls on biogeochemical cycles are particularly relevant in arid, semi-arid and dry sub-humid ecosystems (drylands) because their biological activity is mainly driven by water availability. The increase in aridity predicted for the twenty-first century in many drylands worldwide may therefore threaten the balance between these cycles, differentially affecting the availability of essential nutrients. Here we evaluate how aridity affects the balance between C, N and P in soils collected from 224 dryland sites from all continents except Antarctica. We find a negative effect of aridity on the concentration of soil organic C and total N, but a positive effect on the concentration of inorganic P. Aridity is negatively related to plant cover, which may favour the dominance of physical processes such as rock weathering, a major source of P to ecosystems, over biological processes that provide more C and N, such as litter decomposition. Our findings suggest that any predicted increase in aridity with climate change will probably reduce the concentrations of N and C in global drylands, but increase that of P. These changes would uncouple the C, N and P cycles in drylands and could negatively affect the provision of key services provided by these ecosystems.


Assuntos
Clima Desértico , Dessecação , Ecossistema , Geografia , Solo/química , Silicatos de Alumínio/análise , Biomassa , Carbono/análise , Carbono/metabolismo , Ciclo do Carbono , Argila , Mudança Climática , Modelos Teóricos , Nitrogênio/análise , Nitrogênio/metabolismo , Ciclo do Nitrogênio , Monoéster Fosfórico Hidrolases/análise , Monoéster Fosfórico Hidrolases/metabolismo , Fósforo/análise , Fósforo/metabolismo , Plantas/metabolismo
2.
Proc Natl Acad Sci U S A ; 112(51): 15684-9, 2015 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-26647180

RESUMO

Soil bacteria and fungi play key roles in the functioning of terrestrial ecosystems, yet our understanding of their responses to climate change lags significantly behind that of other organisms. This gap in our understanding is particularly true for drylands, which occupy ∼41% of Earth´s surface, because no global, systematic assessments of the joint diversity of soil bacteria and fungi have been conducted in these environments to date. Here we present results from a study conducted across 80 dryland sites from all continents, except Antarctica, to assess how changes in aridity affect the composition, abundance, and diversity of soil bacteria and fungi. The diversity and abundance of soil bacteria and fungi was reduced as aridity increased. These results were largely driven by the negative impacts of aridity on soil organic carbon content, which positively affected the abundance and diversity of both bacteria and fungi. Aridity promoted shifts in the composition of soil bacteria, with increases in the relative abundance of Chloroflexi and α-Proteobacteria and decreases in Acidobacteria and Verrucomicrobia. Contrary to what has been reported by previous continental and global-scale studies, soil pH was not a major driver of bacterial diversity, and fungal communities were dominated by Ascomycota. Our results fill a critical gap in our understanding of soil microbial communities in terrestrial ecosystems. They suggest that changes in aridity, such as those predicted by climate-change models, may reduce microbial abundance and diversity, a response that will likely impact the provision of key ecosystem services by global drylands.


Assuntos
Mudança Climática , Ecossistema , Microbiologia do Solo , Concentração de Íons de Hidrogênio
3.
Oecologia ; 101(2): 141-150, 1995 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28306784

RESUMO

Water relations were analysed in a semi-deciduous forest grove occurring in the oxisols of the Orinoco savannas. This grove has a shallow unconsolidated ironstone cuirass, which is overlaid by a sandy loam layer (0.0-0.5 m) that contains more than 90% of the grove forest root phytomass. Evapotranspiration and through drainage were calculated by using data from the soil profile as related to physical characteristics of the site root zone, hydraulic conductivity, volumetric water content and potential hydraulic gradient. Mean annual evapotranspiration was 783 mm year-1 and annual through drainage below the root zone was 14% (162 mm year-1) of the gross rainfall. This drainage recharged the 42% of the annual saturation deficit of the water table. Similar mean annual evapotranspiration (770 mm year-1) was also calculated by using the water balance components. The mean daily coupling omega factor (Ω) between the grove canopy and the surrounding atmosphere indicated that a high degree of coupling (Ω=0.14±0.16) occurs in the grove and evapotranspiration was mainly controlled by surface conductance. As the dry season proceeded, the soil saturation deficit (δθ) increased rapidly resulting in a threshold surface conductance (0.030-0.005 m s-1) for δθ ranging from 0.05 to 0.10. Hypotheses to explain the omnipresence of perennial species in the wide range of physical conditions in neotropical savannas are discussed.

4.
J Biogeogr ; 41(12): 2307-2319, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25914437

RESUMO

AIM: Geographic, climatic, and soil factors are major drivers of plant beta diversity, but their importance for dryland plant communities is poorly known. This study aims to: i) characterize patterns of beta diversity in global drylands, ii) detect common environmental drivers of beta diversity, and iii) test for thresholds in environmental conditions driving potential shifts in plant species composition. LOCATION: 224 sites in diverse dryland plant communities from 22 geographical regions in six continents. METHODS: Beta diversity was quantified with four complementary measures: the percentage of singletons (species occurring at only one site), Whittake's beta diversity (ß(W)), a directional beta diversity metric based on the correlation in species occurrences among spatially contiguous sites (ß(R2)), and a multivariate abundance-based metric (ß(MV)). We used linear modelling to quantify the relationships between these metrics of beta diversity and geographic, climatic, and soil variables. RESULTS: Soil fertility and variability in temperature and rainfall, and to a lesser extent latitude, were the most important environmental predictors of beta diversity. Metrics related to species identity (percentage of singletons and ß(W)) were most sensitive to soil fertility, whereas those metrics related to environmental gradients and abundance ((ß(R2)) and ß(MV)) were more associated with climate variability. Interactions among soil variables, climatic factors, and plant cover were not important determinants of beta diversity. Sites receiving less than 178 mm of annual rainfall differed sharply in species composition from more mesic sites (> 200 mm). MAIN CONCLUSIONS: Soil fertility and variability in temperature and rainfall are the most important environmental predictors of variation in plant beta diversity in global drylands. Our results suggest that those sites annually receiving ~ 178 mm of rainfall will be especially sensitive to future climate changes. These findings may help to define appropriate conservation strategies for mitigating effects of climate change on dryland vegetation.

5.
Science ; 335(6065): 214-8, 2012 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-22246775

RESUMO

Experiments suggest that biodiversity enhances the ability of ecosystems to maintain multiple functions, such as carbon storage, productivity, and the buildup of nutrient pools (multifunctionality). However, the relationship between biodiversity and multifunctionality has never been assessed globally in natural ecosystems. We report here on a global empirical study relating plant species richness and abiotic factors to multifunctionality in drylands, which collectively cover 41% of Earth's land surface and support over 38% of the human population. Multifunctionality was positively and significantly related to species richness. The best-fitting models accounted for over 55% of the variation in multifunctionality and always included species richness as a predictor variable. Our results suggest that the preservation of plant biodiversity is crucial to buffer negative effects of climate change and desertification in drylands.


Assuntos
Biodiversidade , Clima , Ecossistema , Plantas , Mudança Climática , Conservação dos Recursos Naturais , Geografia , Fenômenos Geológicos , Modelos Estatísticos , Análise de Regressão , Temperatura
6.
Interciencia ; 31(4): 293-299, abr. 2006. tab
Artigo em Espanhol | LILACS | ID: lil-449510

RESUMO

En un suelo ácido Typic haplustults de muy baja capacidad productiva agrícola se evaluó el efecto de prácticas conservacionistas, tales como labranza mínima, cultivares tolerantes a la acidez, rotación de cultivo, y combinación de abonos orgánicos e inorgánicos, sobre la dinámica del P disponible y la sustentabilidad de un sistema de rotación cereal-leguminosa. Los tratamientos fueron abonos orgánicos: restos de cosecha de sorgo (RG), Indigosphera lespedicioides (RN) y Crotalaria juncea (RL), y fueron comparados con testigo sin residuo (SR). En cada parcela de abono orgánico se fertilizó con fuentes inorgánicas: T1 (N+0P+K), T2 (N+P-RFR+K), T3 (N+P-RFRA+K) y T4 (N+P-FDA+K), donde RFR: roca fosfórica de Riecito, RFRPA: roca fosfórica de Riecito parcialmente acidulada y FDA: fosfato diamónico. En un cultivo de Sorghum bicolor se aplicó 100, 80 y 60kg·ha-1 de N, P y K, respectivamente, y en uno de Cajanus cajan, 15, 60, 45, 5,7 y 0,2kg·ha-1de N, P, K, S y Mo, respectivamente. Tras 2 años de manejo conservacionista se evidencian incrementos en la disponibilidad del P y disminución en Al+3. El P disponible osciló entre 10 y 40mg·kg-1, siendo significativamente mayor donde se aplicó RN y RL con cualquier fuente de P. El Al intercambiable (Al+3) disminuyó en el subsuelo (<0,7cmol·kg-1) con P-FDA. Con FDA hubo movilización de P hasta los 40cm de profundidad, donde el porcentaje de saturación con aluminio es alto


Assuntos
Agricultura , Alumínio , Conservação dos Recursos Naturais , Esterco , Fósforo , Solo , Agricultura , Venezuela
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa