Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Arch Microbiol ; 199(3): 465-474, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27830269

RESUMO

Staphylococcus aureus is a serious causative agent of infectious disease. Multidrug-resistant strains like methicillin-resistant S. aureus compromise treatment efficacy, causing significant morbidity and mortality. Active efflux represents a major antimicrobial resistance mechanism. The proton-driven multidrug efflux pump, LmrS, actively exports structurally distinct antimicrobials. To circumvent resistance and restore clinical efficacy of antibiotics, efflux pump inhibitors are necessary, and natural edible spices like cumin are potential candidates. The mode of cumin antibacterial action and underlying mechanisms behind drug resistance inhibition, however, are unclear. We tested the hypothesis that cumin inhibits LmrS drug transport. We found that cumin inhibited bacterial growth and LmrS ethidium transport in a dosage-dependent manner. We demonstrate that cumin is antibacterial toward a multidrug-resistant host and that resistance modulation involves multidrug efflux inhibition.


Assuntos
Cuminum/química , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Genes MDR/fisiologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Extratos Vegetais/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana Múltipla/genética , Etídio/metabolismo , Genes MDR/genética , Testes de Sensibilidade Microbiana , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética
2.
Arch Microbiol ; 199(8): 1103-1112, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28432381

RESUMO

The causative agent of cholera, Vibrio cholerae, is a public health concern. Multidrug-resistant V. cholerae variants may reduce chemotherapeutic efficacies of severe cholera. We previously reported that the multidrug efflux pump EmrD-3 from V. cholerae confers resistance to multiple structurally distinct antimicrobials. Medicinal plant compounds are potential candidates for EmrD-3 efflux pump modulation. The antibacterial activities of garlic Allium sativum, although poorly understood, predicts that a main bioactive component, allyl sulfide, modulates EmrD-3 efflux. Thus, we tested whether A. sativum extract acts in synergy with antimicrobials and that a main bioactive component allyl sulfide inhibits EmrD-3 efflux. We found that A. sativum extract and allyl sulfide inhibited ethidium bromide efflux in cells harboring EmrD-3 and that A. sativum lowered the MICs of multiple antibacterials. We conclude that A. sativum and allyl sulfide inhibit EmrD-3 and that A. sativum extract synergistically enhances antibacterial agents.


Assuntos
Compostos Alílicos/farmacologia , Antibacterianos/farmacologia , Etídio/metabolismo , Moduladores de Transporte de Membrana/farmacologia , Proteínas de Membrana Transportadoras/metabolismo , Sulfetos/farmacologia , Vibrio cholerae/metabolismo , Cólera/tratamento farmacológico , Cólera/microbiologia , Sinergismo Farmacológico , Alho/química , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologia
3.
Antimicrob Agents Chemother ; 54(12): 5406-12, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20855745

RESUMO

A multidrug efflux pump designated LmrS (lincomycin resistance protein of Staphylococcus aureus), belonging to the major facilitator superfamily (MFS) of transporters, was cloned, and the role of LmrS in antimicrobial efflux was evaluated. The highest relative increase in MIC, 16-fold, was observed for linezolid and tetraphenylphosphonium chloride (TPCL), followed by an 8-fold increase for sodium dodecyl sulfate (SDS), trimethoprim, and chloramphenicol. LmrS has 14 predicted membrane-spanning domains and is homologous to putative lincomycin resistance proteins of Bacillus spp., Lactobacillus spp., and Listeria spp.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Cloranfenicol/farmacologia , Farmacorresistência Bacteriana Múltipla , Etídio/farmacologia , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/classificação , Proteínas de Membrana Transportadoras/genética , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Oniocompostos/farmacologia , Compostos Organofosforados/farmacologia , Filogenia , Homologia de Sequência de Aminoácidos , Dodecilsulfato de Sódio/farmacologia , Staphylococcus aureus/genética , Trimetoprima/farmacologia , Vancomicina/farmacologia
4.
Int J Pharm Sci Res ; 5(10): 4141-4152, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25750914

RESUMO

Thromboembolic disorders are the leading cause of human mortality. Therefore, development of effective anticoagulant therapy is critical. Factor XIIIA (FXIIIA) protein is a crucial factor in the blood coagulation cascade, and hence it is a vital target for evolution of new antithrombotic agents. Structure-function studies of clotting factor active sites, clot formation, and thrombus structure have gained prominence in the efforts to develop novel anticoagulants. Factor XIIIA was homology modelled with the human transglutaminase-2 crystal structure as a base template for BLAST analysis. Docking and comparative binding site analysis revealed active site residue conservation and inhibitor-protein interactions. Nineteen small molecules possessing suspected anticoagulant properties were successfully docked into the FXIIIA active site following the best CoMFA and CoMSIA prediction values. Dabigatran etexilate was anticipated to be the best FXIIIA inhibitor among the nineteen anticoagulants with the highest binding affinity for the FXIIIA protein and the highest FlexX dock score of -29.8 KJ/mol. Structural properties of FXIIIA inhibitors with increased antithrombotic activity were predicted by this docking study.

5.
Genom Discov ; 2(1): 1-15, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25722857

RESUMO

Pathogenic strains of Vibrio cholerae are responsible for endemic and pandemic outbreaks of the disease cholera. The complete toxigenic mechanisms underlying virulence in Vibrio strains are poorly understood. The hypothesis of this work was that virulent versus non-virulent strains of V. cholerae harbor distinctive genomic elements that encode virulence. The purpose of this study was to elucidate genomic differences between the O1 serotypes and non-O1 V. cholerae PS15, a non-toxigenic strain, in order to identify novel genes potentially responsible for virulence. In this study, we compared the whole genome of the non-O1 PS15 strain to the whole genomes of toxigenic serotypes at the phylogenetic level, and found that the PS15 genome was distantly related to those of toxigenic V. cholerae. Thus we focused on a detailed gene comparison between PS15 and the distantly related O1 V. cholerae N16961. Based on sequence alignment we tentatively assigned chromosome numbers 1 and 2 to elements within the genome of non-O1 V. cholerae PS15. Further, we found that PS15 and O1 V. cholerae N16961 shared 98% identity and 766 genes, but of the genes present in N16961 that were missing in the non-O1 V. cholerae PS15 genome, 56 were predicted to encode not only for virulence-related genes (colonization, antimicrobial resistance, and regulation of persister cells) but also genes involved in the metabolic biosynthesis of lipids, nucleosides and sulfur compounds. Additionally, we found 113 genes unique to PS15 that were predicted to encode other properties related to virulence, disease, defense, membrane transport, and DNA metabolism. Here, we identified distinctive and novel genomic elements between O1 and non-O1 V. cholerae genomes as potential virulence factors and, thus, targets for future therapeutics. Modulation of such novel targets may eventually enhance eradication efforts of endemic and pandemic disease cholera in afflicted nations.

6.
Genome Announc ; 1(1)2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23409261

RESUMO

The draft genome sequence of a non-O1 Vibrio cholerae strain, PS15, organized into 3,512 open reading frames within a 3.9-Mb genome, was determined. The PS15 genome sequence will allow for the study of the evolution of virulence and environmental adaptation in V. cholerae.

7.
J Microbiol Biotechnol ; 21(9): 914-20, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21952367

RESUMO

Vibrio cholerae utilizes mannitol through an operon of the phosphoenolpyruvate-dependent phosphotransferase (PTS) type. A gene, mtlD, encoding mannitol-1-phosphate dehydrogenase was identified within the 3.9 kb mannitol operon of V. cholerae. The mtlD gene was cloned from V. cholerae O395, and the recombinant enzyme was functionally expressed in E. coli as a 6×His-tagged protein and purified to homogeneity. The recombinant protein is a monomer with a molecular mass of 42.35 kDa. The purified recombinant MtlD reduced fructose 6-phosphate (F6P) using NADH as a cofactor with a K(m) of 1.54 +/- 0.1 mM and V(max) of 320.8 +/- 7.81 micronmol/min/mg protein. The pH and temperature optima for F6P reduction were determined to be 7.5 and 37°C, respectively. Using quantitative real-time PCR analysis, mtlD was found to be constitutively expressed in V. cholerae, but the expression was up-regulated when grown in the presence of mannitol. The MtlD expression levels were not significantly different between V. cholerae O1 and non-O1 strains.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Clonagem Molecular , Desidrogenase do Álcool de Açúcar/química , Desidrogenase do Álcool de Açúcar/genética , Vibrio cholerae/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Estabilidade Enzimática , Regulação Enzimológica da Expressão Gênica , Cinética , Manitol/metabolismo , Dados de Sequência Molecular , Alinhamento de Sequência , Desidrogenase do Álcool de Açúcar/metabolismo , Vibrio cholerae/química , Vibrio cholerae/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa