Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Cell ; 144(3): 364-75, 2011 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-21277013

RESUMO

The centriole, and the related basal body, is an ancient organelle characterized by a universal 9-fold radial symmetry and is critical for generating cilia, flagella, and centrosomes. The mechanisms directing centriole formation are incompletely understood and represent a fundamental open question in biology. Here, we demonstrate that the centriolar protein SAS-6 forms rod-shaped homodimers that interact through their N-terminal domains to form oligomers. We establish that such oligomerization is essential for centriole formation in C. elegans and human cells. We further generate a structural model of the related protein Bld12p from C. reinhardtii, in which nine homodimers assemble into a ring from which nine coiled-coil rods radiate outward. Moreover, we demonstrate that recombinant Bld12p self-assembles into structures akin to the central hub of the cartwheel, which serves as a scaffold for centriole formation. Overall, our findings establish a structural basis for the universal 9-fold symmetry of centrioles.


Assuntos
Caenorhabditis elegans/citologia , Centríolos/química , Centríolos/metabolismo , Sequência de Aminoácidos , Animais , Caenorhabditis/química , Caenorhabditis/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Multimerização Proteica , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência
2.
Geneva Pap Risk Insur Issues Pract ; 47(3): 495-498, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35756944
3.
Proc Natl Acad Sci U S A ; 110(28): 11373-8, 2013 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-23798409

RESUMO

Centrioles are evolutionary conserved organelles that give rise to cilia and flagella as well as centrosomes. Centrioles display a characteristic ninefold symmetry imposed by the spindle assembly abnormal protein 6 (SAS-6) family. SAS-6 from Chlamydomonas reinhardtii and Danio rerio was shown to form ninefold symmetric, ring-shaped oligomers in vitro that were similar to the cartwheels observed in vivo during early steps of centriole assembly in most species. Here, we report crystallographic and EM analyses showing that, instead, Caenorhabotis elegans SAS-6 self-assembles into a spiral arrangement. Remarkably, we find that this spiral arrangement is also consistent with ninefold symmetry, suggesting that two distinct SAS-6 oligomerization architectures can direct the same output symmetry. Sequence analysis suggests that SAS-6 spirals are restricted to specific nematodes. This oligomeric arrangement may provide a structural basis for the presence of a central tube instead of a cartwheel during centriole assembly in these species.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Animais , Proteínas de Caenorhabditis elegans/química , Proteínas de Ciclo Celular/química , Cristalografia por Raios X , Microscopia Eletrônica , Modelos Moleculares , Conformação Proteica
4.
J Cell Sci ; 124(Pt 22): 3884-93, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22100914

RESUMO

Patients with MCPH (autosomal recessive primary microcephaly) exhibit impaired brain development, presumably due to the compromised function of neuronal progenitors. Seven MCPH loci have been identified, including one that encodes centrosome protein 4.1 associated protein (CPAP; also known as centromere protein J, CENPJ). CPAP is a large coiled-coil protein enriched at the centrosome, a structure that comprises two centrioles and surrounding pericentriolar material (PCM). CPAP depletion impairs centriole formation, whereas CPAP overexpression results in overly long centrioles. The mechanisms by which CPAP MCPH patient mutations affect brain development are not clear. Here, we identify CPAP protein domains crucial for its centriolar localization, as well as for the elongation and the formation of centrioles. Furthermore, we demonstrate that conditions that resemble CPAP MCPH patient mutations compromise centriole formation in tissue culture cells. Using adhesive micropatterns, we reveal that such defects correlate with a randomization of spindle position. Moreover, we demonstrate that the MCPH protein SCL/TAL1 interrupting locus (STIL) is also essential for centriole formation and for proper spindle position. Our findings are compatible with the notion that mutations in CPAP and STIL cause MCPH because of aberrant spindle positioning in progenitor cells during brain development.


Assuntos
Centríolos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Microcefalia/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Fuso Acromático/metabolismo , Linhagem Celular , Centríolos/química , Centríolos/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Microcefalia/genética , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Estrutura Terciária de Proteína , Transporte Proteico , Fuso Acromático/química , Fuso Acromático/genética
5.
Nat Commun ; 14(1): 1626, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36959183

RESUMO

Casparian strips (CS) are aligned bands of lignin-impregnated cell walls, building an extracellular diffusion barrier in roots. Their structure profoundly differs from tight junctions (TJ), analogous structures in animals. Nonetheless, CS membrane domain (CSD) proteins 1-5 (CASP1-5) are homologues of occludins, TJ components. CASP-marked membranes display cell wall (matrix) adhesion and membrane protein exclusion. A full CASP knock-out now reveals CASPs are not needed for localized lignification, since correctly positioned lignin microdomains still form in the mutant. Ultra-structurally, however, these microdomains are disorganized, showing excessive cell wall growth, lack of exclusion zone and matrix adhesion, and impaired exocyst dynamics. Proximity-labelling identifies a Rab-GTPase subfamily, known exocyst activators, as potential CASP-interactors and demonstrate their localization and function at the CSD. We propose that CASP microdomains displace initial secretory foci by excluding vesicle tethering factors, thereby ensuring rapid fusion of microdomains into a membrane-cell wall band that seals the extracellular space.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Lignina/metabolismo , Membrana Celular/metabolismo , Transporte Biológico
6.
Nat Commun ; 12(1): 3805, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34155202

RESUMO

Centrioles are evolutionarily conserved multi-protein organelles essential for forming cilia and centrosomes. Centriole biogenesis begins with self-assembly of SAS-6 proteins into 9-fold symmetrical ring polymers, which then stack into a cartwheel that scaffolds organelle formation. The importance of this architecture has been difficult to decipher notably because of the lack of precise tools to modulate the underlying assembly reaction. Here, we developed monobodies against Chlamydomonas reinhardtii SAS-6, characterizing three in detail with X-ray crystallography, atomic force microscopy and cryo-electron microscopy. This revealed distinct monobody-target interaction modes, as well as specific consequences on ring assembly and stacking. Of particular interest, monobody MBCRS6-15 induces a conformational change in CrSAS-6, resulting in the formation of a helix instead of a ring. Furthermore, we show that this alteration impairs centriole biogenesis in human cells. Overall, our findings identify monobodies as powerful molecular levers to alter the architecture of multi-protein complexes and tune centriole assembly.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centríolos/metabolismo , Proteínas de Algas/química , Proteínas de Algas/metabolismo , Proteínas de Transporte/química , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/química , Centríolos/ultraestrutura , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/ultraestrutura , Microscopia Crioeletrônica , Cristalografia por Raios X , Microscopia de Força Atômica , Modelos Moleculares , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína
7.
Curr Biol ; 27(16): 2486-2498.e6, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-28781053

RESUMO

Centrioles are evolutionarily conserved macromolecular structures that are fundamental to form cilia, flagella, and centrosomes. Centrioles are 9-fold symmetrical microtubule-based cylindrical barrels comprising three regions that can be clearly distinguished in the Chlamydomonas reinhardtii organelle: an ∼100-nm-long proximal region harboring a cartwheel; an ∼250-nm-long central core region containing a Y-shaped linker; and an ∼150-nm-long distal region ending at the transitional plate. Despite the discovery of many centriolar components, no protein has been localized specifically to the central core region in Chlamydomonas thus far. Here, combining relative quantitative mass spectrometry and super-resolution microscopy on purified Chlamydomonas centrioles, we identified POB15 and POC16 as two proteins of the central core region, the distribution of which correlates with that of tubulin glutamylation. We demonstrated that POB15 is an inner barrel protein within this region. Moreover, we developed an assay to uncover temporal relationships between centriolar proteins during organelle assembly and thus established that POB15 is recruited after the cartwheel protein CrSAS-6 and before tubulin glutamylation takes place. Furthermore, we discovered that two poc16 mutants exhibit flagellar defects, indicating that POC16 is important for flagellum biogenesis. In addition, we discovered that WDR90, the human homolog of POC16, localizes to a region of human centrioles that we propose is analogous to the central core of Chlamydomonas centrioles. Moreover, we demonstrate that WDR90 is required for ciliogenesis, echoing the findings in Chlamydomonas. Overall, our work provides novel insights into the identity and function of centriolar central core components.


Assuntos
Proteínas de Bactérias/genética , Centríolos/metabolismo , Chlamydomonas reinhardtii/fisiologia , Cílios/genética , Proteínas de Bactérias/metabolismo , Chlamydomonas reinhardtii/genética , Cílios/metabolismo , Humanos , Tubulina (Proteína)/metabolismo
8.
Nat Cell Biol ; 18(4): 393-403, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26999736

RESUMO

Centrioles are critical for the formation of centrosomes, cilia and flagella in eukaryotes. They are thought to assemble around a nine-fold symmetric cartwheel structure established by SAS-6 proteins. Here, we have engineered Chlamydomonas reinhardtii SAS-6-based oligomers with symmetries ranging from five- to ten-fold. Expression of a SAS-6 mutant that forms six-fold symmetric cartwheel structures in vitro resulted in cartwheels and centrioles with eight- or nine-fold symmetries in vivo. In combination with Bld10 mutants that weaken cartwheel-microtubule interactions, this SAS-6 mutant produced six- to eight-fold symmetric cartwheels. Concurrently, the microtubule wall maintained eight- and nine-fold symmetries. Expressing SAS-6 with analogous mutations in human cells resulted in nine-fold symmetric centrioles that exhibited impaired length and organization. Together, our data suggest that the self-assembly properties of SAS-6 instruct cartwheel symmetry, and lead us to propose a model in which the cartwheel and the microtubule wall assemble in an interdependent manner to establish the native architecture of centrioles.


Assuntos
Proteínas de Algas/metabolismo , Centríolos/metabolismo , Chlamydomonas reinhardtii/metabolismo , Microtúbulos/metabolismo , Proteínas de Algas/química , Proteínas de Algas/genética , Western Blotting , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Centríolos/química , Centríolos/ultraestrutura , Chlamydomonas reinhardtii/genética , Cristalografia por Raios X , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Microscopia de Força Atômica , Microscopia Eletrônica , Microscopia de Fluorescência , Microtúbulos/química , Microtúbulos/ultraestrutura , Modelos Moleculares , Conformação Molecular , Mutação , Multimerização Proteica , Estrutura Terciária de Proteína , Interferência de RNA
10.
Biomed Opt Express ; 5(10): 3326-36, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25360353

RESUMO

Within the last decade, super-resolution methods that surpass the diffraction limit of light microscopy have provided invaluable insight into a variety of biological questions. Each of these approaches has inherent advantages and limitations, such that their combination is a powerful means to transform them into versatile tools for the life sciences. Here, we report the development of a combined SIM and STORM setup that maintains the optimal resolution of both methods and which is coupled to image registration to localize biological structures in 3D using multicolor labeling. We utilized this workflow to determine the localization of Bld12p/CrSAS-6 in purified basal bodies of Chlamydomonas reinhardtii with utmost precision, demonstrating its usefulness for accurate molecular mapping in 3D.

11.
Dev Cell ; 25(6): 555-71, 2013 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-23769972

RESUMO

Centrioles are essential for forming cilia, flagella, and centrosomes and are thus critical for a range of fundamental cellular processes. Despite their importance, the mechanisms governing centriole biogenesis remain incompletely understood. We performed a high-content genome-wide small-interfering-RNA-based screen to identify genes regulating centriole formation in human cells. We designed an algorithm to automatically detect GFP-Centrin foci that, combined with subsequent manual analysis, allowed us to identify 44 genes required for centriole formation and 32 genes needed for restricting centriole number. Detailed follow-up characterization uncovered that the C2 domain protein C2CD3 is required for distal centriole formation and suggests that it functions in the basal body to template primary cilia. Moreover, we found that the E3 ubiquitin ligase TRIM37 prevents centriole reduplication events. We developed a dynamic web interface containing all images and numerical features as a powerful resource to investigate facets of centrosome biology.


Assuntos
Proteínas de Ciclo Celular/genética , Centríolos/fisiologia , Estudo de Associação Genômica Ampla/métodos , Genômica/métodos , RNA Interferente Pequeno/genética , Cílios/fisiologia , Flagelos/fisiologia , Citometria de Fluxo , Técnica Indireta de Fluorescência para Anticorpo , Proteínas de Fluorescência Verde/genética , Células HeLa , Humanos
12.
Curr Biol ; 23(17): 1620-8, 2013 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-23932403

RESUMO

BACKGROUND: Centrioles are cylindrical microtubule-based structures whose assembly is critical for the formation of cilia, flagella, and centrosomes. The centriole proximal region harbors a cartwheel that dictates the 9-fold symmetry of centrioles. Although the cartwheel architecture has been recently analyzed, how it connects to the peripheral microtubules is not understood. More generally, a high-resolution view of the proximal region of the centriole is lacking, thus limiting understanding of the underlying assembly mechanisms. RESULTS: We report the complete architecture of the Trichonympha centriole proximal region using cryotomography. The resulting 3D map reveals several features, including additional densities in the cartwheel that exhibit a 9-fold symmetrical arrangement, as well as the structure of the Pinhead and the A-C linker that connect to microtubules. Moreover, we uncover striking chiral features that might impart directionality to the entire centriole. Furthermore, we identify Trichonympha SAS-6 and demonstrate that it localizes to the cartwheel in vivo. CONCLUSIONS: Our work provides unprecedented insight into the architecture of the centriole proximal region, which is key for a thorough understanding of the mechanisms governing centriole assembly.


Assuntos
Centríolos , Animais , Hypermastigia/citologia , Dados de Sequência Molecular
13.
Dev Cell ; 20(4): 550-62, 2011 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-21497765

RESUMO

Centrosome duplication occurs once per cell cycle and ensures that the two resulting centrosomes assemble a bipolar mitotic spindle. Centriole formation is fundamental for centrosome duplication. In Caenorhabditis elegans, the evolutionarily conserved proteins SPD-2, ZYG-1, SAS-6, SAS-5, and SAS-4 are essential for centriole formation, but how they function is not fully understood. Here, we demonstrate that Protein Phosphatase 2A (PP2A) is also critical for centriole formation in C. elegans embryos. We find that PP2A subunits genetically and physically interact with the SAS-5/SAS-6 complex. Furthermore, we show that PP2A-mediated dephosphorylation promotes centriolar targeting of SAS-5 and ensures SAS-6 delivery to the site of centriole assembly. We find that PP2A is similarly needed for the presence of HsSAS-6 at centrioles and for centriole formation in human cells. These findings lead us to propose that PP2A-mediated loading of SAS-6 proteins is critical at the onset of centriole formation.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centríolos/metabolismo , Proteína Fosfatase 2/metabolismo , Animais , Caenorhabditis elegans/citologia
15.
Dev Cell ; 17(6): 900-7, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20059959

RESUMO

Despite being essential for proper cell division, the mechanisms governing centrosome duplication are incompletely understood and represent an important open question in cell biology. Formation of a new centriole next to each existing one is critical for centrosome duplication. In Caenorhabditis elegans embryos, the proteins SPD-2, ZYG-1, SAS-6, SAS-5, and SAS-4 are essential for centriole formation, but the mechanisms underlying their requirement remain unclear. Here, we demonstrate that the kinase ZYG-1 phosphorylates the coiled-coil protein SAS-6 at serine 123 in vitro. Importantly, we show that this phosphorylation event is crucial for centriole formation in vivo. Furthermore, we establish that such phosphorylation ensures the maintenance of SAS-6 at the emerging centriole. Overall, our findings establish that phosphorylation of the evolutionarily conserved protein SAS-6 is critical for centriole formation and thus for faithful cell division.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centríolos/metabolismo , Proteínas Quinases/metabolismo , Animais , Fosforilação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa