Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Bioconjug Chem ; 34(3): 510-517, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36787347

RESUMO

Cysteines are routinely used as site-specific handles to synthesize antibody-drug conjugates for targeted immunotherapy applications. Michael additions between thiols and maleimides are some of the most common methods for modifying cysteines, but these functional groups can be difficult to prepare on scale, and the resulting linkages have been shown to be reversible under some physiological conditions. Here, we show that the enzyme tyrosinase, which oxidizes conveniently accessed phenols to afford reactive ortho-quinone intermediates, can be used to attach phenolic cargo to cysteines engineered on antibody surfaces. The resulting linkages between the thiols and ortho-quinones are shown to be more resistant than maleimides to reversion under physiological conditions. Using this approach, we construct antibody conjugates bearing cytotoxic payloads, which exhibit targeted cell killing, and further demonstrate this method for the attachment of a variety of cargo to antibodies, including fluorophores and oligonucleotides.


Assuntos
Antineoplásicos , Imunoconjugados , Cisteína , Acoplamento Oxidativo , Compostos de Sulfidrila , Quinonas , Maleimidas
2.
Nature ; 527(7578): 323-8, 2015 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-26536114

RESUMO

Staphylococcus aureus is considered to be an extracellular pathogen. However, survival of S. aureus within host cells may provide a reservoir relatively protected from antibiotics, thus enabling long-term colonization of the host and explaining clinical failures and relapses after antibiotic therapy. Here we confirm that intracellular reservoirs of S. aureus in mice comprise a virulent subset of bacteria that can establish infection even in the presence of vancomycin, and we introduce a novel therapeutic that effectively kills intracellular S. aureus. This antibody-antibiotic conjugate consists of an anti-S. aureus antibody conjugated to a highly efficacious antibiotic that is activated only after it is released in the proteolytic environment of the phagolysosome. The antibody-antibiotic conjugate is superior to vancomycin for treatment of bacteraemia and provides direct evidence that intracellular S. aureus represents an important component of invasive infections.


Assuntos
Antibacterianos/farmacologia , Bacteriemia , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Espaço Intracelular/microbiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Vancomicina/farmacologia , Animais , Antibacterianos/uso terapêutico , Bacteriemia/tratamento farmacológico , Bacteriemia/microbiologia , Portador Sadio/tratamento farmacológico , Portador Sadio/microbiologia , Desenho de Fármacos , Feminino , Imunoconjugados/química , Espaço Intracelular/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Camundongos , Testes de Sensibilidade Microbiana , Fagossomos/efeitos dos fármacos , Fagossomos/metabolismo , Fagossomos/microbiologia , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/patologia , Staphylococcus aureus/patogenicidade , Vancomicina/uso terapêutico
3.
Nat Chem Biol ; 9(6): 390-7, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23603658

RESUMO

The prosurvival BCL-2 family protein BCL-X(L) is often overexpressed in solid tumors and renders malignant tumor cells resistant to anticancer therapeutics. Enhancing apoptotic responses by inhibiting BCL-X(L) will most likely have widespread utility in cancer treatment and, instead of inhibiting multiple prosurvival BCL-2 family members, a BCL-X(L)-selective inhibitor would be expected to minimize the toxicity to normal tissues. We describe the use of a high-throughput screen to discover a new series of small molecules targeting BCL-X(L) and their structure-guided development by medicinal chemistry. The optimized compound, WEHI-539 (7), has high affinity (subnanomolar) and selectivity for BCL-X(L) and potently kills cells by selectively antagonizing its prosurvival activity. WEHI-539 will be an invaluable tool for distinguishing the roles of BCL-X(L) from those of its prosurvival relatives, both in normal cells and notably in malignant tumor cells, many of which may prove to rely upon BCL-X(L) for their sustained growth.


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Proteína bcl-X/antagonistas & inibidores , Proteína bcl-X/química , Animais , Apoptose , Benzotiazóis/química , Linhagem Celular Tumoral , Cristalografia por Raios X , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Hidrazonas/química , Cinética , Camundongos , Modelos Químicos , Proteína de Sequência 1 de Leucemia de Células Mieloides , Ligação Proteica , Proteínas Proto-Oncogênicas c-bcl-2/genética
4.
J Med Chem ; 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39235949

RESUMO

Toll-like receptor (TLR) activation converts immunologically inactive tumors into immunologically active tumors by activating tumor residing antigen-presenting cells and recruitment of cytotoxic T lymphocytes. Targeted immune agonists (TIAs) are antibody drug conjugates with small-molecule TLR agonist payloads. The mechanism of action of TIAs involves tumor antigen recognition, Fcγ-receptor-dependent phagocytosis, and TLR-mediated activation to drive tumor killing by myeloid cells. Several new low DAR anti-HER2 TIAs conjugated with novel TLR7 or dual-TLR7/8 agonists with cleavable and noncleavable linkers were synthesized and profiled. In vitro studies demonstrated that these TIAs activate myeloid cells only in the presence of antigen-expressing cancer cells. Evaluation in ELISpot-based assays confirmed the low immunogenicity of these constructs. Systemic administration of the novel TIAs in tumor-bearing mice resulted in tumor reduction at low doses. These results provide a strong rationale for further development of the TIAs as a novel class of immunotherapeutics.

5.
J Med Chem ; 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39172064

RESUMO

Toll-like receptors 7 and 8 are involved in modulating the adaptive and innate immune responses, and their activation has shown promise as a therapeutic strategy in the field of immuno-oncology. While systemic exposure to TLR7/8 agonists can result in poor tolerance, combination therapies and targeted delivery through antibody-drug conjugates (ADCs) can help mitigate adverse effects. Described herein is the identification of a novel and potent series of pyrazolopyrimidine-based TLR7/8 agonists with tunable receptor selectivity. Representative agonists from this series were successfully able to induce the production of various proinflammatory cytokines and chemokines from human peripheral blood mononuclear cells. Anti-HER2-25 and anti-HER2-26 ADCs made from this class of payloads demonstrated mechanism-based activation of TLR7/8 in a THP1/N87 coculture system.

6.
Drug Metab Dispos ; 41(12): 2104-13, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24041744

RESUMO

The application of modeling and simulation techniques is increasingly common in the preclinical stages of the drug development process. GDC-0917 [(S)-1-((S)-2-cyclohexyl-2-((S)-2-(methylamino)propanamido)acetyl)-N-(2-(oxazol-2-yl)-4-phenylthiazol-5-yl)pyrrolidine-2-carboxamide] is a potent second-generation antagonist of inhibitor of apoptosis (IAP) proteins that is being developed for the treatment of various cancers. GDC-0917 has low to moderate clearance in the mouse (12.0 ml/min/kg), rat (27.0 ml/min/kg), and dog (15.3 ml/min/kg), and high clearance in the monkey (67.6 ml/min/kg). Accordingly, oral bioavailability was lowest in monkeys compared with other species. Based on our experience with a prototype molecule with similar structure, in vitro-in vivo extrapolation was used to predict a moderate clearance (11.5 ml/min/kg) in humans. The predicted human volume of distribution was estimated using simple allometry at 6.69 l/kg. Translational pharmacokinetic-pharmacodynamic (PK-PD) analysis using results from MDA-MB-231-X1.1 breast cancer xenograft studies and predicted human pharmacokinetics suggests that ED50 and ED90 targets can be achieved in humans using acceptable doses (72 mg and 660 mg, respectively) and under an acceptable time frame. The relationship between GDC-0917 concentrations and pharmacodynamic response (cIAP1 degradation) was characterized using an in vitro peripheral blood mononuclear cell immunoassay. Simulations of human GDC-0917 plasma concentration-time profile and cIAP1 degradation at the 5-mg starting dose in the phase 1 clinical trial agreed well with observations. This work shows the importance of leveraging information from prototype molecules and illustrates how modeling and simulation can be used to add value to preclinical studies in the early stages of the drug development process.


Assuntos
Proteínas Inibidoras de Apoptose/antagonistas & inibidores , Proteínas Inibidoras de Apoptose/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/farmacocinética , Animais , Disponibilidade Biológica , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Cães , Avaliação Pré-Clínica de Medicamentos , Feminino , Meia-Vida , Hepatócitos/efeitos dos fármacos , Humanos , Macaca fascicularis , Masculino , Camundongos , Camundongos SCID , Ratos , Ratos Sprague-Dawley , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
7.
Bioorg Med Chem ; 21(4): 979-92, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23294830

RESUMO

PPARγ is a member of the nuclear hormone receptor family and plays a key role in the regulation of glucose homeostasis. This Letter describes the discovery of a novel chemical class of diarylsulfonamide partial agonists that act as selective PPARγ modulators (SPPARγMs) and display a unique pharmacological profile compared to the thiazolidinedione (TZD) class of PPARγ full agonists. Herein we report the initial discovery of partial agonist 4 and the structure-activity relationship studies that led to the selection of clinical compound INT131 (3), a potent PPARγ partial agonist that displays robust glucose-lowering activity in rodent models of diabetes while exhibiting a reduced side-effects profile compared to marketed TZDs.


Assuntos
PPAR gama/agonistas , Quinolinas/química , Sulfonamidas/química , Administração Oral , Animais , Sítios de Ligação , Cristalografia por Raios X , Citocromo P-450 CYP3A , Inibidores das Enzimas do Citocromo P-450 , Sistema Enzimático do Citocromo P-450/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Meia-Vida , Resistência à Insulina , Masculino , Camundongos , PPAR gama/metabolismo , Estrutura Terciária de Proteína , Quinolinas/farmacocinética , Quinolinas/uso terapêutico , Ratos , Ratos Sprague-Dawley , Ratos Zucker , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/farmacocinética , Sulfonamidas/uso terapêutico
8.
Cell Chem Biol ; 30(11): 1468-1477.e6, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37820725

RESUMO

Dysregulated iron homeostasis underlies diverse pathologies, from ischemia-reperfusion injury to epithelial-mesenchymal transition and drug-tolerant "persister" cancer cell states. Here, we introduce ferrous iron-activatable luciferin-1 (FeAL-1), a small-molecule probe for bioluminescent imaging of the labile iron pool (LIP) in luciferase-expressing cells and animals. We find that FeAL-1 detects LIP fluctuations in cells after iron supplementation, depletion, or treatment with hepcidin, the master regulator of systemic iron in mammalian physiology. Utilizing FeAL-1 and a dual-luciferase reporter system, we quantify LIP in mouse liver and three different orthotopic pancreatic ductal adenocarcinoma tumors. We observed up to a 10-fold increase in FeAL-1 bioluminescent signal in xenograft tumors as compared to healthy liver, the major organ of iron storage in mammals. Treating mice with hepcidin further elevated hepatic LIP, as predicted. These studies reveal a therapeutic index between tumoral and hepatic LIP and suggest an approach to sensitize tumors toward LIP-activated therapeutics.


Assuntos
Ferro , Neoplasias , Humanos , Camundongos , Animais , Hepcidinas , Luciferinas , Xenoenxertos , Fígado , Luciferases , Mamíferos
9.
Bioorg Med Chem Lett ; 20(7): 2229-33, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20189383

RESUMO

A series of IAP antagonists based on thiazole or benzothiazole amide isosteres was designed and synthesized. These compounds were tested for binding to the XIAP-BIR3 and ML-IAP BIR using a fluorescence polarization assay. The most potent of these compounds, 19a and 33b, were found to have K(i)'s of 20-30 nM against ML-IAP and 50-60 nM against XIAP-BIR3.


Assuntos
Amidas/química , Amidas/farmacologia , Proteínas Inibidoras de Apoptose/antagonistas & inibidores , Peptídeos/química , Tiazóis/química , Tiazóis/farmacologia , Sítios de Ligação , Biomimética , Cristalografia por Raios X , Humanos , Proteínas Inibidoras de Apoptose/metabolismo , Modelos Moleculares , Peptídeos/metabolismo
10.
ACS Med Chem Lett ; 11(10): 1829-1836, 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33062160

RESUMO

Herein we describe the discovery of A-1331852, a first-in-class orally active BCL-XL inhibitor that selectively and potently induces apoptosis in BCL-XL-dependent tumor cells. This molecule was generated by re-engineering our previously reported BCL-XL inhibitor A-1155463 using structure-based drug design. Key design elements included rigidification of the A-1155463 pharmacophore and introduction of sp3-rich moieties capable of generating highly productive interactions within the key P4 pocket of BCL-XL. A-1331852 has since been used as a critical tool molecule for further exploring BCL-2 family protein biology, while also representing an attractive entry into a drug discovery program.

11.
J Pharm Sci ; 108(6): 1934-1943, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30639736

RESUMO

Solubilization of new chemical entities for toxicity assessment must use excipients that do not negatively impact drug pharmacokinetics and toxicology. In this study, we investigated the tolerability of a model freebase compound, GDC-0152, solubilized by pH adjustment with succinic acid and complexation with hydroxypropyl-ß-cyclodextrin (HP-ß-CD) to enable intravenous use. Solubility, critical micelle concentration, and association constant with HP-ß-CD were determined. Blood compatibility and potential for hemolysis were assessed in vitro. Local tolerability was assessed after intravenous and subcutaneous injections in rats. A pharmacokinetic study was conducted in rats after intravenous bolus administration. GDC-0152 exhibited pH-dependent solubility that was influenced by self-association. The presence of succinic acid increased solubility in a concentration-dependent manner. HP-ß-CD alone also increased solubility, but the extent of solubility enhancement was significantly lower than succinic acid alone. Inclusion of HP-ß-CD in the solution of GDC-0152 improved blood compatibility, reduced hemolytic potential by ∼20-fold in vitro, and increased the maximum tolerated dose to 80 mg/kg.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina/farmacocinética , Cicloexanos/toxicidade , Avaliação Pré-Clínica de Medicamentos/métodos , Excipientes/farmacocinética , Pirróis/toxicidade , Testes de Toxicidade Aguda/métodos , 2-Hidroxipropil-beta-Ciclodextrina/administração & dosagem , Animais , Cicloexanos/administração & dosagem , Cicloexanos/farmacocinética , Relação Dose-Resposta a Droga , Interações Medicamentosas , Excipientes/administração & dosagem , Hemólise/efeitos dos fármacos , Injeções Intravenosas , Injeções Subcutâneas , Masculino , Dose Máxima Tolerável , Modelos Animais , Pirróis/administração & dosagem , Pirróis/farmacocinética , Ratos , Solubilidade
12.
Clin Cancer Res ; 25(4): 1358-1368, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29959143

RESUMO

PURPOSE: The treatment of acute myeloid leukemia (AML) has not significantly changed in 40 years. Cytarabine- and anthracycline-based chemotherapy induction regimens (7 + 3) remain the standard of care, and most patients have poor long-term survival. The reapproval of Mylotarg, an anti-CD33-calicheamicin antibody-drug conjugate (ADC), has demonstrated ADCs as a clinically validated option to enhance the effectiveness of induction therapy. We are interested in developing a next-generation ADC for AML to improve upon the initial success of Mylotarg. EXPERIMENTAL DESIGN: The expression pattern of CLL-1 and its hematopoietic potential were investigated. A novel anti-CLL-1-ADC, with a highly potent pyrrolobenzodiazepine (PBD) dimer conjugated through a self-immolative disulfide linker, was developed. The efficacy and safety profiles of this ADC were evaluated in mouse xenograft models and in cynomolgus monkeys. RESULTS: We demonstrate that CLL-1 shares similar prevalence and trafficking properties that make CD33 an excellent ADC target for AML, but lacks expression on hematopoietic stem cells that hampers current CD33-targeted ADCs. Our anti-CLL-1-ADC is highly effective at depleting tumor cells in AML xenograft models and lacks target independent toxicities at doses that depleted target monocytes and neutrophils in cynomolgus monkeys. CONCLUSIONS: Collectively, our data suggest that an anti-CLL-1-ADC has the potential to become an effective and safer treatment for AML in humans, by reducing and allowing for faster recovery from initial cytopenias than the current generation of ADCs for AML.


Assuntos
Anticorpos Anti-Idiotípicos/farmacologia , Imunoconjugados/farmacologia , Lectinas Tipo C/imunologia , Leucemia Mieloide Aguda/tratamento farmacológico , Receptores Mitogênicos/imunologia , Animais , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Lectinas Tipo C/antagonistas & inibidores , Lectinas Tipo C/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/patologia , Camundongos , Receptores Mitogênicos/antagonistas & inibidores , Receptores Mitogênicos/genética , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/genética , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Nat Commun ; 9(1): 1162, 2018 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-29563501

RESUMO

Activity-based probes (ABPs) are widely used to monitor the activity of enzyme families in biological systems. Inferring enzyme activity from probe reactivity requires that the probe reacts with the enzyme at its active site; however, probe-labeling sites are rarely verified. Here we present an enhanced chemoproteomic approach to evaluate the activity and probe reactivity of deubiquitinase enzymes, using bioorthogonally tagged ABPs and a sequential on-bead digestion protocol to enhance the identification of probe-labeling sites. We confirm probe labeling of deubiquitinase catalytic Cys residues and reveal unexpected labeling of deubiquitinases on non-catalytic Cys residues and of non-deubiquitinase proteins. In doing so, we identify ZUFSP (ZUP1) as a previously unannotated deubiquitinase with high selectivity toward cleaving K63-linked chains. ZUFSP interacts with and modulates ubiquitination of the replication protein A (RPA) complex. Our reactive-site-centric chemoproteomics method is broadly applicable for identifying the reaction sites of covalent molecules, which may expand our understanding of enzymatic mechanisms.


Assuntos
Enzimas Desubiquitinantes/química , Processamento de Proteína Pós-Traducional , Proteômica/métodos , Proteína de Replicação A/metabolismo , Coloração e Rotulagem/métodos , Biocatálise , Domínio Catalítico , Cisteína/química , Cisteína/metabolismo , Enzimas Desubiquitinantes/classificação , Enzimas Desubiquitinantes/genética , Enzimas Desubiquitinantes/metabolismo , Células HEK293 , Células HeLa , Humanos , Lisina/química , Lisina/metabolismo , Sondas Moleculares , Proteína de Replicação A/genética , Sumoilação , Ubiquitinação
14.
J Med Chem ; 61(3): 989-1000, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29227683

RESUMO

Antibody-drug conjugates (ADCs) have become an important therapeutic modality for oncology, with three approved by the FDA and over 60 others in clinical trials. Despite the progress, improvements in ADC therapeutic index are desired. Peptide-based ADC linkers that are cleaved by lysosomal proteases have shown sufficient stability in serum and effective payload-release in targeted cells. If the linker can be preferentially hydrolyzed by tumor-specific proteases, safety margin may improve. However, the use of peptide-based linkers limits our ability to modulate protease specificity. Here we report the structure-guided discovery of novel, nonpeptidic ADC linkers. We show that a cyclobutane-1,1-dicarboxamide-containing linker is hydrolyzed predominantly by cathepsin B while the valine-citrulline dipeptide linker is not. ADCs bearing the nonpeptidic linker are as efficacious and stable in vivo as those with the dipeptide linker. Our results strongly support the application of the peptidomimetic linker and present new opportunities for improving the selectivity of ADCs.


Assuntos
Catepsina B/metabolismo , Descoberta de Drogas , Imunoconjugados/química , Imunoconjugados/metabolismo , Peptidomiméticos/química , Peptidomiméticos/metabolismo , Humanos , Espaço Intracelular/metabolismo , Especificidade por Substrato
15.
FEBS J ; 284(10): 1540-1554, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28107776

RESUMO

Proteasomes are multisubunit protease complexes responsible for degrading most intracellular proteins. In addition to removing damaged proteins, they regulate many important cellular processes through the controlled degradation of transcription factors, cell cycle regulators, and enzymes. Eukaryotic proteasomes have three catalytic subunits, ß1, ß2, and ß5, that each has different substrate specificities. Additionally, although we know that diverse cell types express proteasome variants with distinct activity and specificity profiles, the functions of these different pools of proteasomes are not fully understood. Covalent inhibitors of the protease activity of the proteasome have been developed as drugs for hematological malignancies and are currently under investigation for other diseases. Therefore, there is a need for tools that allow direct monitoring of proteasome activity in live cells and tissues. Activity-based probes have proven valuable for biochemical and cell biological studies of the role of individual proteasome subunits, and for evaluating the efficacy and selectivity of proteasome inhibitors. These probes react covalently with the protease active sites, and contain a reporter tag to identify the probe-labeled proteasome subunits. This review will describe the development of broad-spectrum and subunit-specific proteasome activity-based probes, and discuss how these probes have contributed to our understanding of proteasome biology, and to the development of proteasome inhibitors.


Assuntos
Peptídeo Hidrolases/metabolismo , Inibidores de Proteassoma/farmacologia , Proteólise , Especificidade por Substrato
16.
FEBS J ; 284(10): 1555-1576, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28196299

RESUMO

The reversible post-translational modification of proteins by ubiquitin and ubiquitin-like proteins regulates almost all cellular processes, by affecting protein degradation, localization, and complex formation. Deubiquitinases (DUBs) are proteases that remove ubiquitin modifications or cleave ubiquitin chains. Most DUBs are cysteine proteases, which makes them well suited for study by activity-based probes. These DUB probes report on deubiquitinase activity by reacting covalently with the active site in an enzyme-catalyzed manner. They have proven to be important tools to study DUB selectivity and proteolytic activity in different settings, to identify novel DUBs, and to characterize deubiquitinase inhibitors. Inspired by the efficacy of activity-based probes for DUBs, several groups have recently reported probes for the ubiquitin conjugation machinery (E1, E2, and E3 enzymes). Many of these enzymes, while not proteases, also posses active site cysteine residues and can be targeted by covalent probes. In this review, we will discuss how features of the probe (cysteine-reactive group, recognition element, and reporter tag) affect reactivity and suitability for certain experimental applications. We will also review the diverse applications of the current probes, and discuss the need for new probe types to study emerging aspects of ubiquitin biology.


Assuntos
Ubiquitina/metabolismo , Animais , Enzimas Desubiquitinantes/metabolismo , Humanos , Peptídeo Hidrolases/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Processamento de Proteína Pós-Traducional , Proteases Específicas de Ubiquitina/metabolismo
17.
Chem Sci ; 8(1): 366-370, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28451181

RESUMO

Disulfide bonds provide a bioactivatable connection with applications in imaging and therapy. The circulation stability and intracellular release of disulfides are problematically coupled in that increasing stability causes a corresponding decrease in cleavage and payload release. However, an antibody offers the potential for a reversible stabilization. We examined this by attaching a small molecule directly to engineered cysteines in an antibody. At certain sites this unhindered disulfide was stable in circulation yet cellular internalization and antibody catabolism generated a disulfide catabolite that was rapidly reduced. We demonstrated that this stable connection and facile release is applicable to a variety of payloads. The ability to reversibly stabilize a labile functional group with an antibody may offer a way to improve targeted probes and therapeutics.

18.
J Med Chem ; 60(23): 9490-9507, 2017 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-29112410

RESUMO

Three rationally designed pyrrolobenzodiazepine (PBD) drug-linkers have been synthesized via intermediate 19 for use in antibody-drug conjugates (ADCs). They lack a cleavable trigger in the linker and consist of a maleimide for cysteine antibody conjugation, a hydrophilic spacer, and either an alkyne (6), triazole (7), or piperazine (8) link to the PBD. In vitro IC50 values were 11-48 ng/mL in HER2 3+ SK-BR-3 and KPL-4 (7 inactive) for the anti-HER2 ADCs (HER2 0 MCF7, all inactive) and 0.10-1.73 µg/mL (7 inactive) in CD22 3+ BJAB and WSU-DLCL2 for anti-CD22 ADCs (CD22 0 Jurkat, all inactive at low doses). In vivo antitumor efficacy for the anti-HER2 ADCs in Founder 5 was observed with tumor stasis at 0.5-1 mg/kg, 1 mg/kg, and 3-6 mg/kg for 6, 8, and 7, respectively. Tumor stasis at 2 mg/kg was observed for anti-CD22 6 in WSU-DLCL2. In summary, noncleavable PBD-ADCs exhibit potent activity, particularly in HER2 models.


Assuntos
Antineoplásicos/química , Antineoplásicos/uso terapêutico , Benzodiazepinas/química , Benzodiazepinas/uso terapêutico , Imunoconjugados/química , Imunoconjugados/uso terapêutico , Neoplasias/tratamento farmacológico , Pirróis/química , Pirróis/uso terapêutico , Animais , Antineoplásicos/farmacologia , Benzodiazepinas/farmacologia , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dimerização , Feminino , Humanos , Imunoconjugados/farmacologia , Camundongos , Modelos Moleculares , Pirróis/farmacologia , Receptor ErbB-2/antagonistas & inibidores , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/antagonistas & inibidores
19.
Mol Cancer Ther ; 16(5): 871-878, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28223423

RESUMO

A novel disulfide linker was designed to enable a direct connection between cytotoxic pyrrolobenzodiazepine (PBD) drugs and the cysteine on a targeting antibody for use in antibody-drug conjugates (ADCs). ADCs composed of a cysteine-engineered antibody were armed with a PBD using a self-immolative disulfide linker. Both the chemical linker and the antibody site were optimized for this new bioconjugation strategy to provide a highly stable and efficacious ADC. This novel disulfide ADC was compared with a conjugate containing the same PBD drug, but attached to the antibody via a peptide linker. Both ADCs had similar efficacy in mice bearing human tumor xenografts. Safety studies in rats revealed that the disulfide-linked ADC had a higher MTD than the peptide-linked ADC. Overall, these data suggest that the novel self-immolative disulfide linker represents a valuable way to construct ADCs with equivalent efficacy and improved safety. Mol Cancer Ther; 16(5); 871-8. ©2017 AACR.


Assuntos
Anticorpos/administração & dosagem , Benzodiazepinas/administração & dosagem , Imunoconjugados/administração & dosagem , Neoplasias/tratamento farmacológico , Pirróis/administração & dosagem , Animais , Anticorpos/química , Anticorpos/imunologia , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/imunologia , Benzodiazepinas/química , Benzodiazepinas/imunologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dissulfetos/química , Dissulfetos/imunologia , Humanos , Imunoconjugados/química , Camundongos , Neoplasias/imunologia , Neoplasias/patologia , Pirróis/química , Pirróis/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Nat Chem ; 8(12): 1112-1119, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27874860

RESUMO

The reversible attachment of a small-molecule drug to a carrier for targeted delivery can improve pharmacokinetics and the therapeutic index. Previous studies have reported the delivery of molecules that contain primary and secondary amines via an amide or carbamate bond; however, the ability to employ tertiary-amine-containing bioactive molecules has been elusive. Here we describe a bioreversible linkage based on a quaternary ammonium that can be used to connect a broad array of tertiary and heteroaryl amines to a carrier protein. Using a concise, protecting-group-free synthesis we demonstrate the chemoselective modification of 12 complex molecules that contain a range of reactive functional groups. We also show the utility of this connection with both protease-cleavable and reductively cleavable antibody-drug conjugates that were effective and stable in vitro and in vivo. Studies with a tertiary-amine-containing antibiotic show that the resulting antibody-antibiotic conjugate provided appropriate stability and release characteristics and led to an unexpected improvement in activity over the conjugates previously connected via a carbamate.


Assuntos
Aminas/química , Anticorpos Monoclonais/química , Portadores de Fármacos/química , Imunoconjugados/metabolismo , Preparações Farmacêuticas/química , Antibacterianos/química , Antineoplásicos/química , Catepsinas/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Imunoconjugados/química , Imunoconjugados/farmacologia , Preparações Farmacêuticas/metabolismo , Compostos de Amônio Quaternário/química , Solubilidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa