Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Mol Microbiol ; 97(2): 381-95, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25898991

RESUMO

The widespread use of chloroquine to treat Plasmodium falciparum infections has resulted in the selection and dissemination of variant haplotypes of the primary resistance determinant PfCRT. These haplotypes have encountered drug pressure and within-host competition with wild-type drug-sensitive parasites. To examine these selective forces in vitro, we genetically engineered P. falciparum to express geographically diverse PfCRT haplotypes. Variant alleles from the Philippines (PH1 and PH2, which differ solely by the C72S mutation) both conferred a moderate gain of chloroquine resistance and a reduction in growth rates in vitro. Of the two, PH2 showed higher IC50 values, contrasting with reduced growth. Furthermore, a highly mutated pfcrt allele from Cambodia (Cam734) conferred moderate chloroquine resistance and enhanced growth rates, when tested against wild-type pfcrt in co-culture competition assays. These three alleles mediated cross-resistance to amodiaquine, an antimalarial drug widely used in Africa. Each allele, along with the globally prevalent Dd2 and 7G8 alleles, rendered parasites more susceptible to lumefantrine, the partner drug used in the leading first-line artemisinin-based combination therapy. These data reveal ongoing region-specific evolution of PfCRT that impacts drug susceptibility and relative fitness in settings of mixed infections, and raise important considerations about optimal agents to treat chloroquine-resistant malaria.


Assuntos
Proteínas de Membrana Transportadoras/genética , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Cloroquina , Resistência a Medicamentos , Eritrócitos/parasitologia , Frequência do Gene , Haplótipos , Humanos , Malária Falciparum/parasitologia , Proteínas de Membrana Transportadoras/metabolismo , Mutação , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo
2.
Biochem Pharmacol ; 214: 115639, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37290594

RESUMO

Esophageal squamous cell carcinoma (ESCC) is characterized by the development of cancer in the esophageal squamous epithelium through a step-by-step accumulation of genetic, epigenetic, and histopathological alterations. Recent studies have demonstrated that cancer-associated gene mutations exist in histologically normal or precancerous clones of the human esophageal epithelium. However, only a small proportion of such mutant clones will develop ESCC, and most ESCC patients develop only one cancer. This suggests that most of these mutant clones are kept in a histologically normal state by neighboring cells with higher competitive fitness. When some of the mutant cells evade cell competition, they become "super-competitors" and develop into clinical cancer. It is known that human ESCC is composed of a heterogeneous population of cancer cells that interact with and influence their environment and neighbors. During cancer therapy, these cancer cells not only respond to therapeutic agents but also compete with each other. Therefore, competition between ESCC cells within the same ESCC tumor is a constantly dynamic process. However, it remains challenging to fine-tune the competitive fitness of various clones for therapeutic benefits. In this review, we will explore the role of cell competition in carcinogenesis, cancer prevention, and therapy, using NRF2, NOTCH pathway, and TP53 as examples. We believe that cell competition is a research area with promising targets for clinical translation. Manipulating cell competition may help improve the prevention and therapy of ESCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/prevenção & controle , Neoplasias Esofágicas/prevenção & controle , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas/prevenção & controle , Carcinoma de Células Escamosas/genética , Competição entre as Células , Carcinogênese
3.
Cell Chem Biol ; 29(5): 824-839.e6, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34233174

RESUMO

Widespread Plasmodium falciparum resistance to first-line antimalarials underscores the vital need to develop compounds with novel modes of action and identify new druggable targets. Here, we profile five compounds that potently inhibit P. falciparum asexual blood stages. Resistance selection studies with three carboxamide-containing compounds, confirmed by gene editing and conditional knockdowns, identify point mutations in the parasite transporter ABCI3 as the primary mediator of resistance. Selection studies with imidazopyridine or quinoline-carboxamide compounds also yield changes in ABCI3, this time through gene amplification. Imidazopyridine mode of action is attributed to inhibition of heme detoxification, as evidenced by cellular accumulation and heme fractionation assays. For the copy-number variation-selecting imidazopyridine and quinoline-carboxamide compounds, we find that resistance, manifesting as a biphasic concentration-response curve, can independently be mediated by mutations in the chloroquine resistance transporter PfCRT. These studies reveal the interconnectedness of P. falciparum transporters in overcoming drug pressure in different parasite strains.


Assuntos
Antimaláricos , Antagonistas do Ácido Fólico , Malária Falciparum , Parasitos , Quinolinas , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Heme , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Proteínas de Membrana Transportadoras/genética , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Quinolinas/farmacologia
4.
Vaccines (Basel) ; 9(3)2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33810085

RESUMO

Adenovirus-based vaccines are demonstrating promising clinical potential for multiple infectious diseases, including COVID-19. However, the immunogenicity of the vector itself decreases its effectiveness as a boosting vaccine due to the induction of strong anti-vector neutralizing immunity. Here we determined how dissolvable microneedle patches (DMN) for skin immunization can overcome this issue, using a clinically-relevant adenovirus-based Plasmodium falciparum malaria vaccine, AdHu5-PfRH5, in mice. Incorporation of vaccine into patches significantly enhanced its thermostability compared to the liquid form. Conventional high dose repeated immunization by the intramuscular (IM) route induced low antigen-specific IgG titres and high anti-vector immunity. A low priming dose of vaccine, by the IM route, but more so using DMN patches, induced the most efficacious immune responses, assessed by parasite growth inhibitory activity (GIA) assays. Administration of low dose AdHu5-PfRH5 using patches to the skin, boosted by high dose IM, induced the highest antigen-specific serum IgG response after boosting, the greatest skewing of the antibody response towards the antigen and away from the vector, and the highest efficacy. This study therefore demonstrates that repeated use of the same adenovirus vaccine can be highly immunogenic towards the transgene if a low dose is used to prime the response. It also provides a method of stabilizing adenovirus vaccine, in easy-to-administer dissolvable microneedle patches, permitting storage and distribution out of cold chain.

5.
Int J Pharm ; 586: 119390, 2020 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-32540349

RESUMO

Re-emergence and geographic expansion of leishmaniasis is accelerating efforts to develop a safe and effective Leshmania vaccine. Vaccines using Leishmania recombinant antigens, such as LiHyp1, which is mostly present in the amastigote parasite form, are being developed as a next generation to crude killed parasite-based vaccines. The main objective of this work was to develop a LiHyp1-based vaccine and determine if it can induce protective immunity in BALB/c mice when administered using a dissolvable microneedle (DMN) patch by the skin route. The LiHyp1 antigen was incorporated into cationic liposomes (CL), with or without the TLR9 agonist, CpG. The LiHyp1-liposomal vaccines were characterized with respect to size, protein encapsulation rates and retention of their physical characteristics after incorporation into the DMN patch. DMN mechanical strength and skin penetration ability were tested. A vaccine composed of LiHyp1, CpG and liposomes and subcutaneously injected or a vaccine containing antigen and CpG in DMN patches, without liposomes, induced high antibody responses and significant levels of protection against L. donovani parasite infection. This study progresses the development of an efficacious leishmania vaccine by detailing promising vaccine formulations and skin delivery technologies and it addresses protective efficacy of a liposome-based dissolvable microneedle patch vaccine system.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Vacinas contra Leishmaniose/administração & dosagem , Leishmaniose/prevenção & controle , Receptor Toll-Like 9/imunologia , Animais , Antígenos de Protozoários/administração & dosagem , Antígenos de Protozoários/imunologia , Cátions , Feminino , Imunização , Injeções Subcutâneas , Vacinas contra Leishmaniose/farmacocinética , Lipossomos , Camundongos , Camundongos Endogâmicos BALB C , Absorção Cutânea , Adesivo Transdérmico
6.
J Infus Nurs ; 42(4): 203-208, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31283663

RESUMO

A cluster of 11 midline catheter failures occurred during a 2-week period in a Hospital in the Home program in an urban tertiary hospital in Australia. These failures prompted a 4-month retrospective audit of patients receiving outpatient antimicrobial therapy between December 1, 2016 and March 1, 2017. Primary outcomes were dwell time and catheter failure. Peripherally inserted central catheters had significantly fewer failures and significantly longer dwell times compared with midline catheters. Women experienced higher rates of midline catheter failure than men. The proportion of patients with midline catheters receiving continuous infusions who experienced a failure was markedly higher than those receiving bolus doses. Suggestions for further related research are discussed.


Assuntos
Cateterismo Venoso Central/efeitos adversos , Cateteres de Demora/efeitos adversos , Hospitais/estatística & dados numéricos , Infusões Intravenosas , Antibacterianos/administração & dosagem , Austrália , Cateterismo Periférico/efeitos adversos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Tempo
7.
J Control Release ; 311-312: 96-103, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31484041

RESUMO

The cessation of the oral poliovirus vaccine (OPV) and the inclusion of inactivated poliovirus (IPV) into all routine immunization programmes, strengthens the need for new IPV options. Several novel delivery technologies are being assessed that permit simple yet efficacious and potentially dose-sparing administration of IPV. Current disadvantages of conventional liquid IPV include the dependence on cold chain and the need for injection, resulting in high costs, production of hazardous sharps waste and requiring sufficiently trained personnel. In the current study, a dissolvable microneedle (DMN) patch for skin administration that incorporates trivalent inactivated Sabin poliovirus vaccine (sIPV) was developed. Microneedles were physically stable in the ambient environment for at least 30 min and efficiently penetrated skin. Polio-specific IgG antibodies that were able to neutralize the virus were induced in rats upon administration using trivalent sIPV-containing microneedle patches. These sIPV-patch-induced neutralizing antibody responses were comparable to higher vaccine doses delivered intramuscularly for type 1 and type 3 poliovirus serotypes. Moreover, applying the patches to the flank elicited a significantly higher antibody response compared to their administration to the ear. This study progresses the development of a skin patch-based technology that would simplify vaccine administration of Sabin IPV and thereby overcome logistic issues currently constraining poliovirus eradication campaigns.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Sistemas de Liberação de Medicamentos , Agulhas , Vacinas contra Poliovirus/administração & dosagem , Animais , Feminino , Imunoglobulina G/sangue , Microinjeções , Poliovirus/imunologia , Ratos Wistar , Absorção Cutânea , Suínos
8.
Sci Rep ; 9(1): 19624, 2019 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-31873110

RESUMO

Antimicrobial resistance is rapidly expanding, in a large part due to mobile genetic elements. We screened 94 fecal fluoroquinolone-resistant Escherichia coli isolates from Nigeria for six plasmid-mediated quinolone resistance (PMQR) genes. Sixteen isolates harbored at least one of the PMQR genes and four were positive for aac-6-Ib-cr. In one strain, aac-6-Ib-cr was mapped to a 125 Kb self-transmissible IncFII plasmid, pMB2, which also bears blaCTX-M-15, seven other functional resistance genes and multiple resistance pseudogenes. Laboratory strains carrying pMB2 grew faster than isogenic strains lacking the plasmid in both rich and minimal media. We excised a 32 Kb fragment containing transporter genes and several open-reading frames of unknown function. The resulting 93 Kb mini-plasmid conferred slower growth rates and lower fitness than wildtype pMB2. Trans-complementing the deletion with the cloned sitABCD genes confirmed that they accounted for the growth advantage conferred by pMB2 in iron-depleted media. pMB2 is a large plasmid with a flexible resistance region that contains loci that can account for evolutionary success in the absence of antimicrobials. Ancillary functions conferred by resistance plasmids can mediate their retention and transmissibility, worsening the trajectory for antimicrobial resistance and potentially circumventing efforts to contain resistance through restricted use.


Assuntos
Conjugação Genética , Farmacorresistência Bacteriana/genética , Infecções por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli , Plasmídeos/genética , Farmacorresistência Bacteriana/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Escherichia coli/metabolismo , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fluoroquinolonas/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Nigéria , Plasmídeos/metabolismo
9.
Cell Chem Biol ; 26(7): 991-1000.e7, 2019 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-31080074

RESUMO

The attachment of myristate to the N-terminal glycine of certain proteins is largely a co-translational modification catalyzed by N-myristoyltransferase (NMT), and involved in protein membrane-localization. Pathogen NMT is a validated therapeutic target in numerous infectious diseases including malaria. In Plasmodium falciparum, NMT substrates are important in essential processes including parasite gliding motility and host cell invasion. Here, we generated parasites resistant to a particular NMT inhibitor series and show that resistance in an in vitro parasite growth assay is mediated by a single amino acid substitution in the NMT substrate-binding pocket. The basis of resistance was validated and analyzed with a structure-guided approach using crystallography, in combination with enzyme activity, stability, and surface plasmon resonance assays, allowing identification of another inhibitor series unaffected by this substitution. We suggest that resistance studies incorporated early in the drug development process help selection of drug combinations to impede rapid evolution of parasite resistance.


Assuntos
Aciltransferases/genética , Aciltransferases/metabolismo , Aciltransferases/antagonistas & inibidores , Sequência de Aminoácidos , Antimaláricos/química , Inibidores Enzimáticos/química , Humanos , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Processamento de Proteína Pós-Traducional
10.
Science ; 359(6372): 191-199, 2018 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-29326268

RESUMO

Chemogenetic characterization through in vitro evolution combined with whole-genome analysis can identify antimalarial drug targets and drug-resistance genes. We performed a genome analysis of 262 Plasmodium falciparum parasites resistant to 37 diverse compounds. We found 159 gene amplifications and 148 nonsynonymous changes in 83 genes associated with drug-resistance acquisition, where gene amplifications contributed to one-third of resistance acquisition events. Beyond confirming previously identified multidrug-resistance mechanisms, we discovered hitherto unrecognized drug target-inhibitor pairs, including thymidylate synthase and a benzoquinazolinone, farnesyltransferase and a pyrimidinedione, and a dipeptidylpeptidase and an arylurea. This exploration of the P. falciparum resistome and druggable genome will likely guide drug discovery and structural biology efforts, while also advancing our understanding of resistance mechanisms available to the malaria parasite.


Assuntos
Antimaláricos/farmacologia , Resistência a Medicamentos/genética , Genoma de Protozoário , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Ativação Metabólica , Alelos , Variações do Número de Cópias de DNA , Evolução Molecular Direcionada , Resistência a Múltiplos Medicamentos/genética , Genes de Protozoários , Metabolômica , Mutação , Plasmodium falciparum/crescimento & desenvolvimento , Seleção Genética , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Nat Commun ; 7: 11901, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27301419

RESUMO

Microbial resistance to chemotherapy has caused countless deaths where malaria is endemic. Chemotherapy may fail either due to pre-existing resistance or evolution of drug-resistant parasites. Here we use a diverse set of antimalarial compounds to investigate the acquisition of drug resistance and the degree of cross-resistance against common resistance alleles. We assess cross-resistance using a set of 15 parasite lines carrying resistance-conferring alleles in pfatp4, cytochrome bc1, pfcarl, pfdhod, pfcrt, pfmdr, pfdhfr, cytoplasmic prolyl t-RNA synthetase or hsp90. Subsequently, we assess whether resistant parasites can be obtained after several rounds of drug selection. Twenty-three of the 48 in vitro selections result in resistant parasites, with time to resistance onset ranging from 15 to 300 days. Our data indicate that pre-existing resistance may not be a major hurdle for novel-target antimalarial candidates, and focusing our attention on fast-killing compounds may result in a slower onset of clinical resistance.


Assuntos
Resistência a Medicamentos , Parasitos/fisiologia , Plasmodium falciparum/fisiologia , Animais , Antimaláricos/farmacologia , Células Clonais , Resistência a Medicamentos/efeitos dos fármacos , Mutação INDEL/genética , Mutação/genética , Parasitos/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Polimorfismo de Nucleotídeo Único/genética
12.
ACS Chem Biol ; 10(3): 775-83, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25602169

RESUMO

Equilibrative transporters are potential drug targets; however, most functional assays involve radioactive substrate uptake that is unsuitable for high-throughput screens (HTS). We developed a robust yeast-based growth assay that is potentially applicable to many equilibrative transporters. As proof of principle, we applied our approach to Equilibrative Nucleoside Transporter 1 of the malarial parasite Plasmodium falciparum (PfENT1). PfENT1 inhibitors might serve as novel antimalarial drugs since PfENT1-mediated purine import is essential for parasite proliferation. To identify PfENT1 inhibitors, we screened 64 560 compounds and identified 171 by their ability to rescue the growth of PfENT1-expressing fui1Δ yeast in the presence of a cytotoxic PfENT1 substrate, 5-fluorouridine (5-FUrd). In secondary assays, nine of the highest activity compounds inhibited PfENT1-dependent growth of a purine auxotrophic yeast strain with adenosine as the sole purine source (IC50 0.2-2 µM). These nine compounds completely blocked [(3)H]adenosine uptake into PfENT1-expressing yeast and erythrocyte-free trophozoite-stage parasites (IC50 5-50 nM), and inhibited chloroquine-sensitive and -resistant parasite proliferation (IC50 5-50 µM). Wild-type (WT) parasite IC50 values were up to 4-fold lower compared to PfENT1-knockout (pfent1Δ) parasites. pfent1Δ parasite killing showed a delayed-death phenotype not observed with WT. We infer that, in parasites, the compounds inhibit both PfENT1 and a secondary target with similar efficacy. The secondary target identity is unknown, but its existence may reduce the likelihood of parasites developing resistance to PfENT1 inhibitors. Our data support the hypothesis that blocking purine transport through PfENT1 may be a novel and compelling approach for antimalarial drug development.


Assuntos
Antimaláricos/farmacologia , Ensaios de Triagem em Larga Escala , Proteínas de Transporte de Nucleobases, Nucleosídeos, Nucleotídeos e Ácidos Nucleicos/antagonistas & inibidores , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Trofozoítos/efeitos dos fármacos , Adenosina/metabolismo , Antimaláricos/química , Cultura Axênica , Transporte Biológico/efeitos dos fármacos , Deleção de Genes , Expressão Gênica , Teste de Complementação Genética , Proteínas de Transporte de Nucleobases, Nucleosídeos, Nucleotídeos e Ácidos Nucleicos/genética , Proteínas de Transporte de Nucleobases, Nucleosídeos, Nucleotídeos e Ácidos Nucleicos/metabolismo , Proteínas de Transporte de Nucleosídeos/genética , Proteínas de Transporte de Nucleosídeos/metabolismo , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade , Trofozoítos/crescimento & desenvolvimento , Trofozoítos/metabolismo , Uridina/análogos & derivados , Uridina/farmacologia
13.
Cell Host Microbe ; 18(3): 371-81, 2015 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26355219

RESUMO

During its life cycle, Plasmodium falciparum undergoes rapid proliferation fueled by de novo synthesis and acquisition of host cell lipids. Consistent with this essential role, Plasmodium lipid synthesis enzymes are emerging as potential drug targets. To explore their broader potential for therapeutic interventions, we assayed the global lipid landscape during P. falciparum sexual and asexual blood stage (ABS) development. Using liquid chromatography-mass spectrometry, we analyzed 304 lipids constituting 24 classes in ABS parasites, infected red blood cell (RBC)-derived microvesicles, gametocytes, and uninfected RBCs. Ten lipid classes were previously uncharacterized in P. falciparum, and 70%-75% of the lipid classes exhibited changes in abundance during ABS and gametocyte development. Utilizing compounds that target lipid metabolism, we affirmed the essentiality of major classes, including triacylglycerols. These studies highlight the interplay between host and parasite lipid metabolism and provide a comprehensive analysis of P. falciparum lipids with candidate pathways for drug discovery efforts.


Assuntos
Metabolismo dos Lipídeos , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/metabolismo , Cromatografia Líquida , Lipídeos/análise , Espectrometria de Massas , Plasmodium falciparum/química
14.
Nat Commun ; 6: 6715, 2015 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-25823686

RESUMO

The widespread emergence of Plasmodium falciparum (Pf) strains resistant to frontline agents has fuelled the search for fast-acting agents with novel mechanism of action. Here, we report the discovery and optimization of novel antimalarial compounds, the triaminopyrimidines (TAPs), which emerged from a phenotypic screen against the blood stages of Pf. The clinical candidate (compound 12) is efficacious in a mouse model of Pf malaria with an ED99 <30 mg kg(-1) and displays good in vivo safety margins in guinea pigs and rats. With a predicted half-life of 36 h in humans, a single dose of 260 mg might be sufficient to maintain therapeutic blood concentration for 4-5 days. Whole-genome sequencing of resistant mutants implicates the vacuolar ATP synthase as a genetic determinant of resistance to TAPs. Our studies highlight the potential of TAPs for single-dose treatment of Pf malaria in combination with other agents in clinical development.


Assuntos
Antimaláricos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Pirimidinas/farmacologia , Aminas/farmacologia , Animais , Avaliação Pré-Clínica de Medicamentos , Resistência Microbiana a Medicamentos , Cobaias , Meia-Vida , Ratos
15.
J Med Chem ; 57(15): 6642-52, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-25007124

RESUMO

From the phenotypic screening of the AstraZeneca corporate compound collection, N-aryl-2-aminobenzimidazoles have emerged as novel hits against the asexual blood stage of Plasmodium falciparum (Pf). Medicinal chemistry optimization of the potency against Pf and ADME properties resulted in the identification of 12 as a lead molecule. Compound 12 was efficacious in the P. berghei (Pb) model of malaria. This compound displayed an excellent pharmacokinetic profile with a long half-life (19 h) in rat blood. This profile led to an extended survival of animals for over 30 days following a dose of 50 mg/kg in the Pb malaria model. Compound 12 retains its potency against a panel of Pf isolates with known mechanisms of resistance. The fast killing observed in the in vitro parasite reduction ratio (PRR) assay coupled with the extended survival highlights the promise of this novel chemical class for the treatment of malaria.


Assuntos
Aminopiridinas/química , Antimaláricos/química , Benzimidazóis/química , Aminopiridinas/farmacocinética , Aminopiridinas/farmacologia , Animais , Antimaláricos/farmacocinética , Antimaláricos/farmacologia , Benzimidazóis/farmacocinética , Benzimidazóis/farmacologia , Hepatócitos/metabolismo , Humanos , Malária/tratamento farmacológico , Malária/mortalidade , Camundongos SCID , Microssomos Hepáticos/metabolismo , Plasmodium berghei/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Ratos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa