Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 294(10): 3454-3463, 2019 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-30610115

RESUMO

Annexin proteins function as Ca2+-dependent regulators of membrane trafficking and repair that may also modulate membrane curvature. Here, using high-resolution confocal imaging, we report that the intestine-specific annexin A13 (ANX A13) localizes to the tips of intestinal microvilli and determined the crystal structure of the ANX A13a isoform to 2.6 Å resolution. The structure revealed that the N terminus exhibits an alternative fold that converts the first two helices and the associated helix-loop-helix motif into a continuous α-helix, as stabilized by a domain-swapped dimer. We also found that the dimer is present in solution and partially occludes the membrane-binding surfaces of annexin, suggesting that dimerization may function as a means for regulating membrane binding. Accordingly, as revealed by in vitro binding and cellular localization assays, ANX A13a variants that favor a monomeric state exhibited increased membrane association relative to variants that favor the dimeric form. Together, our findings support a mechanism for how the association of the ANX A13a isoform with the membrane is regulated.


Assuntos
Anexinas/química , Anexinas/metabolismo , Membrana Celular/metabolismo , Mucosa Intestinal/metabolismo , Multimerização Proteica , Animais , Células Epiteliais/citologia , Humanos , Concentração de Íons de Hidrogênio , Intestinos , Lipossomos/metabolismo , Camundongos , Modelos Moleculares , Especificidade de Órgãos , Ligação Proteica , Conformação Proteica em alfa-Hélice , Estrutura Quaternária de Proteína , Transporte Proteico
2.
Infect Immun ; 88(6)2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32284370

RESUMO

Helicobacter pylori colonizes the gastric mucosa and secretes a pore-forming toxin (VacA). Two main types of VacA, m1 and m2, can be distinguished by phylogenetic analysis. Type m1 forms of VacA have been extensively studied, but there has been relatively little study of m2 forms. In this study, we generated H. pylori strains producing chimeric proteins in which VacA m1 segments of a parental strain were replaced by corresponding m2 sequences. In comparison to the parental m1 VacA protein, a chimeric protein (designated m2/m1) containing m2 sequences in the N-terminal portion of the m region was less potent in causing vacuolation of HeLa cells, AGS gastric cells, and AZ-521 duodenal cells and had reduced capacity to cause membrane depolarization or death of AZ-521 cells. Consistent with the observed differences in activity, the chimeric m2/m1 VacA protein bound to cells at reduced levels compared to the binding levels of the parental m1 protein. The presence of two strain-specific insertions or deletions within or adjacent to the m region did not influence toxin activity. Experiments with human gastric organoids grown as monolayers indicated that m1 and m2/m1 forms of VacA had similar cell-vacuolating activities. Interestingly, both forms of VacA bound preferentially to the basolateral surface of organoid monolayers and caused increased cell vacuolation when interacting with the basolateral surface compared to the apical surface. These data provide insights into functional correlates of sequence variation in the VacA midregion (m region).


Assuntos
Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Variação Genética , Infecções por Helicobacter/microbiologia , Helicobacter pylori/fisiologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Regulação Bacteriana da Expressão Gênica , Humanos , Domínios Proteicos , Multimerização Proteica , Transporte Proteico , Vacúolos/metabolismo , Vacúolos/ultraestrutura
3.
Infect Immun ; 87(4)2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30692181

RESUMO

Helicobacter pylori VacA is a secreted pore-forming toxin that induces cell vacuolation in vitro and contributes to the pathogenesis of gastric cancer and peptic ulcer disease. We observed that purified VacA has relatively little effect on the viability of AGS gastric epithelial cells, but the presence of exogenous weak bases such as ammonium chloride (NH4Cl) enhances the susceptibility of these cells to VacA-induced vacuolation and cell death. Therefore, we tested the hypothesis that NH4Cl augments VacA toxicity by altering the intracellular trafficking of VacA or inhibiting intracellular VacA degradation. We observed VacA colocalization with LAMP1- and LC3-positive vesicles in both the presence and absence of NH4Cl, indicating that NH4Cl does not alter VacA trafficking to lysosomes or autophagosomes. Conversely, we found that supplemental NH4Cl significantly increases the intracellular stability of VacA. By conducting experiments using chemical inhibitors, stable ATG5 knockdown cell lines, and ATG16L1 knockout cells (generated using CRISPR/Cas9), we show that VacA degradation is independent of autophagy and proteasome activity but dependent on lysosomal acidification. We conclude that weak bases like ammonia, potentially generated during H. pylori infection by urease and other enzymes, enhance VacA toxicity by inhibiting toxin degradation.


Assuntos
Proteínas de Bactérias/metabolismo , Células Epiteliais/citologia , Mucosa Gástrica/citologia , Infecções por Helicobacter/microbiologia , Helicobacter pylori/metabolismo , Autofagia/efeitos dos fármacos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/toxicidade , Linhagem Celular , Sobrevivência Celular , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/microbiologia , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/microbiologia , Helicobacter pylori/química , Helicobacter pylori/genética , Humanos , Concentração de Íons de Hidrogênio , Muramidase/química , Muramidase/metabolismo , Estabilidade Proteica , Transporte Proteico , Proteólise
4.
Infect Immun ; 86(5)2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29531133

RESUMO

Helicobacter pylori, a Gram-negative bacterium, is a well-known risk factor for gastric cancer. H. pylori vacuolating cytotoxin A (VacA) is a secreted pore-forming toxin that induces a wide range of cellular responses. Like many other bacterial toxins, VacA has been hypothesized to utilize lipid rafts to gain entry into host cells. Here, we used giant plasma membrane vesicles (GPMVs) as a model system to understand the preferential partitioning of VacA into lipid rafts. We show that a wild-type (WT) toxin predominantly associates with the raft phase. Acid activation of VacA enhances binding of the toxin to GPMVs but is not required for raft partitioning. VacA mutant proteins with alterations at the amino terminus (resulting in impaired membrane channel formation) and a nonoligomerizing VacA mutant protein retain the ability to preferentially associate with lipid rafts. Consistent with these results, the isolated VacA p55 domain was capable of binding to lipid rafts. We conclude that the affinity of VacA for rafts is independent of its capacity to oligomerize or form membrane channels.


Assuntos
Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Helicobacter pylori/metabolismo , Helicobacter pylori/patogenicidade , Microdomínios da Membrana/metabolismo , Neoplasias Gástricas/patologia , Vacúolos/metabolismo , Interações Hospedeiro-Patógeno
5.
Mol Microbiol ; 102(1): 22-36, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27309820

RESUMO

Helicobacter pylori colonizes the human stomach and is a potential cause of peptic ulceration or gastric adenocarcinoma. H. pylori secretes a pore-forming toxin known as vacuolating cytotoxin A (VacA). The 88 kDa secreted VacA protein, composed of an N-terminal p33 domain and a C-terminal p55 domain, assembles into water-soluble oligomers. The structural organization of membrane-bound VacA has not been characterized in any detail and the role(s) of specific VacA domains in membrane binding and insertion are unclear. We show that membrane-bound VacA organizes into hexameric oligomers. Comparison of the two-dimensional averages of membrane-bound and soluble VacA hexamers generated using single particle electron microscopy reveals a structural difference in the central region of the oligomers (corresponding to the p33 domain), suggesting that membrane association triggers a structural change in the p33 domain. Analyses of the isolated p55 domain and VacA variants demonstrate that while the p55 domain can bind membranes, the p33 domain is required for membrane insertion. Surprisingly, neither VacA oligomerization nor the presence of putative transmembrane GXXXG repeats in the p33 domain is required for membrane insertion. These findings provide new insights into the process by which VacA binds and inserts into the lipid bilayer to form membrane channels.


Assuntos
Proteínas de Bactérias/metabolismo , Helicobacter pylori/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Citotoxinas/metabolismo , Células HeLa , Helicobacter pylori/genética , Humanos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Proteínas de Membrana/metabolismo , Conformação Proteica , Domínios Proteicos , Relação Estrutura-Atividade , Vacúolos/metabolismo
6.
Infect Immun ; 84(9): 2662-70, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27382020

RESUMO

Helicobacter pylori secretes a pore-forming VacA toxin that has structural features and activities substantially different from those of other known bacterial toxins. VacA can assemble into multiple types of water-soluble flower-shaped oligomeric structures, and most VacA activities are dependent on its capacity to oligomerize. The 88-kDa secreted VacA protein can undergo limited proteolysis to yield two domains, designated p33 and p55. The p33 domain is required for membrane channel formation and intracellular toxic activities, and the p55 domain has an important role in mediating VacA binding to cells. Previous studies showed that the p55 domain has a predominantly ß-helical structure, but no structural data are available for the p33 domain. We report here the purification and analysis of a nonoligomerizing mutant form of VacA secreted by H. pylori The nonoligomerizing 88-kDa mutant protein retains the capacity to enter host cells but lacks detectable toxic activity. Analysis of crystals formed by the monomeric protein reveals that the ß-helical structure of the p55 domain extends into the C-terminal portion of p33. Fitting the p88 structural model into an electron microscopy map of hexamers formed by wild-type VacA (predicted to be structurally similar to VacA membrane channels) reveals that p55 and the ß-helical segment of p33 localize to peripheral arms but do not occupy the central region of the hexamers. We propose that the amino-terminal portion of p33 is unstructured when VacA is in a monomeric form and that it undergoes a conformational change during oligomer assembly.


Assuntos
Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Helicobacter pylori/genética , Mutação/genética , Domínios Proteicos/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Linhagem Celular Tumoral , Células HeLa , Helicobacter pylori/metabolismo , Humanos , Canais Iônicos/genética , Canais Iônicos/metabolismo , Microscopia Eletrônica/métodos
7.
Cell Host Microbe ; 32(6): 887-899.e6, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38806059

RESUMO

Inflammation boosts the availability of electron acceptors in the intestinal lumen, creating a favorable niche for pathogenic Enterobacteriaceae. However, the mechanisms linking intestinal inflammation-mediated changes in luminal metabolites and pathogen expansion remain unclear. Here, we show that mucosal inflammation induced by Salmonella enterica serovar Typhimurium (S. Tm) infection increases intestinal levels of the amino acid aspartate. S. Tm used aspartate-ammonia lyase (aspA)-dependent fumarate respiration for growth in the murine gut only during inflammation. AspA-dependent growth advantage was abolished in the gut of germ-free mice and restored in gnotobiotic mice colonized with members of the classes Bacteroidia and Clostridia. Reactive oxygen species (ROS) produced during the host response caused lysis of commensal microbes, resulting in the release of microbiota-derived aspartate that was used by S. Tm, in concert with nitrate-dependent anaerobic respiration, to outcompete commensal Enterobacteriaceae. Our findings demonstrate the role of microbiota-derived amino acids in driving respiration-dependent S. Tm expansion during colitis.


Assuntos
Ácido Aspártico , Microbioma Gastrointestinal , Espécies Reativas de Oxigênio , Salmonella typhimurium , Animais , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Ácido Aspártico/metabolismo , Colite/microbiologia , Colite/metabolismo , Camundongos Endogâmicos C57BL , Enterobacteriaceae/metabolismo , Vida Livre de Germes , Inflamação/microbiologia , Inflamação/metabolismo , Infecções por Salmonella/microbiologia , Infecções por Salmonella/imunologia
8.
Cell Host Microbe ; 31(10): 1604-1619.e10, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37794592

RESUMO

The mechanisms by which the early-life microbiota protects against environmental factors that promote childhood obesity remain largely unknown. Using a mouse model in which young mice are simultaneously exposed to antibiotics and a high-fat (HF) diet, we show that Lactobacillus species, predominant members of the small intestine (SI) microbiota, regulate intestinal epithelial cells (IECs) to limit diet-induced obesity during early life. A Lactobacillus-derived metabolite, phenyllactic acid (PLA), protects against metabolic dysfunction caused by early-life exposure to antibiotics and a HF diet by increasing the abundance of peroxisome proliferator-activated receptor γ (PPAR-γ) in SI IECs. Therefore, PLA is a microbiota-derived metabolite that activates protective pathways in the small intestinal epithelium to regulate intestinal lipid metabolism and prevent antibiotic-associated obesity during early life.


Assuntos
Microbiota , Obesidade Infantil , Humanos , Criança , Animais , Camundongos , Metabolismo dos Lipídeos , Dieta Hiperlipídica/efeitos adversos , Antibacterianos , Poliésteres , Camundongos Endogâmicos C57BL
9.
Cell Rep ; 38(1): 110180, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34986344

RESUMO

The gut microbiota benefits the host by limiting enteric pathogen expansion (colonization resistance), partially via the production of inhibitory metabolites. Propionate, a short-chain fatty acid produced by microbiota members, is proposed to mediate colonization resistance against Salmonella enterica serovar Typhimurium (S. Tm). Here, we show that S. Tm overcomes the inhibitory effects of propionate by using it as a carbon source for anaerobic respiration. We determine that propionate metabolism provides an inflammation-dependent colonization advantage to S. Tm during infection. Such benefit is abolished in the intestinal lumen of Salmonella-infected germ-free mice. Interestingly, S. Tm propionate-mediated intestinal expansion is restored when germ-free mice are monocolonized with Bacteroides thetaiotaomicron (B. theta), a prominent propionate producer in the gut, but not when mice are monocolonized with a propionate-production-deficient B. theta strain. Taken together, our results reveal a strategy used by S. Tm to mitigate colonization resistance by metabolizing microbiota-derived propionate.


Assuntos
Anaerobiose/fisiologia , Propionatos/metabolismo , Salmonelose Animal/patologia , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/metabolismo , Animais , Antibiose/fisiologia , Bacteroides thetaiotaomicron/genética , Bacteroides thetaiotaomicron/metabolismo , Feminino , Microbioma Gastrointestinal/fisiologia , Vida Livre de Germes , Intestinos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Knockout , Nitratos/metabolismo
10.
Cell Host Microbe ; 29(6): 851-853, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34111391

RESUMO

In this issue of Cell Host & Microbe,Xing et al. (2021) show that gut microbiota confer resistance to colitis and colon cancer by stimulating IL-6 and IL-1ß production and Th17 cell expansion. Their findings reveal that even a single bacterial strain, Odoribacter splanchnicus, can confer protective immunity against cancer.


Assuntos
Colite , Microbiota , Neoplasias , Bacteroidetes , Humanos , Imunidade Inata , Células Th17
11.
Dis Model Mech ; 14(5)2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34060626

RESUMO

Landmark discoveries in the gut microbiome field have paved the way for new research aimed at illuminating the influence of microbiota in colorectal cancer. A major challenge is to account for the effect of inherently variable environmental factors on the host and the gut microbiome, while concurrently determining their contribution to carcinogenesis. Here, we briefly discuss the role of the gut microbial community in colorectal cancer and elaborate on the recent insight that environmental factors related to a Western diet and lifestyle may drive the bloom of tumorigenic members of the gut microbiota. We also discuss how future research focused on untangling host-microbe interactions in the colon may influence medical insights that relate to the prevention and treatment of colorectal cancer.


Assuntos
Neoplasias Colorretais/complicações , Disbiose/complicações , Estilo de Vida , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/terapia , Disbiose/microbiologia , Microbioma Gastrointestinal , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/patologia , Interações Hospedeiro-Patógeno , Humanos
12.
mBio ; 12(1)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33468700

RESUMO

5-Aminosalicylic acid (5-ASA), a peroxisome proliferator-activated receptor gamma (PPAR-γ) agonist, is a widely used first-line medication for the treatment of ulcerative colitis, but its anti-inflammatory mechanism is not fully resolved. Here, we show that 5-ASA ameliorates colitis in dextran sulfate sodium (DSS)-treated mice by activating PPAR-γ signaling in the intestinal epithelium. DSS-induced colitis was associated with a loss of epithelial hypoxia and a respiration-dependent luminal expansion of Escherichia coli, which could be ameliorated by treatment with 5-ASA. However, 5-ASA was no longer able to reduce inflammation, restore epithelial hypoxia, or blunt an expansion of E. coli in DSS-treated mice that lacked Pparg expression specifically in the intestinal epithelium. These data suggest that the anti-inflammatory activity of 5-ASA requires activation of epithelial PPAR-γ signaling, thus pointing to the intestinal epithelium as a potential target for therapeutic intervention in ulcerative colitis.IMPORTANCE An expansion of Enterobacterales in the fecal microbiota is a microbial signature of dysbiosis that is linked to many noncommunicable diseases, including ulcerative colitis. Here, we used Escherichia coli, a representative of the Enterobacterales, to show that its dysbiotic expansion during colitis can be remediated by modulating host epithelial metabolism. Dextran sulfate sodium (DSS)-induced colitis reduced mitochondrial activity in the colonic epithelium, thereby increasing the amount of oxygen available to fuel an E. coli expansion through aerobic respiration. Activation of epithelial peroxisome proliferator-activated receptor gamma (PPAR-γ) signaling with 5-aminosalicylic acid (5-ASA) was sufficient to restore mitochondrial activity and blunt a dysbiotic E. coli expansion. These data identify the host's epithelial metabolism as a potential treatment target to remediate microbial signatures of dysbiosis, such as a dysbiotic E. coli expansion in the fecal microbiota.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Colite/tratamento farmacológico , Disbiose/tratamento farmacológico , Escherichia coli/efeitos dos fármacos , Mesalamina/farmacologia , PPAR gama/genética , Animais , Colite/genética , Colite/microbiologia , Colite/patologia , Colo/efeitos dos fármacos , Colo/microbiologia , Colo/patologia , Grupo dos Citocromos b/genética , Grupo dos Citocromos b/metabolismo , Sulfato de Dextrana/administração & dosagem , Disbiose/genética , Disbiose/microbiologia , Disbiose/patologia , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/patogenicidade , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Feminino , Regulação da Expressão Gênica , Inflamação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Nitrato Redutase/genética , Nitrato Redutase/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , PPAR gama/agonistas , PPAR gama/metabolismo , Resultado do Tratamento
13.
Science ; 373(6556): 813-818, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34385401

RESUMO

A Western-style, high-fat diet promotes cardiovascular disease, in part because it is rich in choline, which is converted to trimethylamine (TMA) by the gut microbiota. However, whether diet-induced changes in intestinal physiology can alter the metabolic capacity of the microbiota remains unknown. Using a mouse model of diet-induced obesity, we show that chronic exposure to a high-fat diet escalates Escherichia coli choline catabolism by altering intestinal epithelial physiology. A high-fat diet impaired the bioenergetics of mitochondria in the colonic epithelium to increase the luminal bioavailability of oxygen and nitrate, thereby intensifying respiration-dependent choline catabolism of E. coli In turn, E. coli choline catabolism increased levels of circulating trimethlamine N-oxide, which is a potentially harmful metabolite generated by gut microbiota.


Assuntos
Colo/fisiologia , Dieta Hiperlipídica , Escherichia coli/metabolismo , Mucosa Intestinal/fisiologia , Metilaminas/metabolismo , Animais , Hipóxia Celular , Colina/administração & dosagem , Colina/metabolismo , Colo/citologia , Metabolismo Energético , Células Epiteliais/fisiologia , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Fezes/microbiologia , Microbioma Gastrointestinal , Inflamação , Mucosa Intestinal/metabolismo , Masculino , Metilaminas/sangue , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Nitratos/metabolismo , Obesidade , Consumo de Oxigênio
14.
Toxins (Basel) ; 8(6)2016 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-27271669

RESUMO

The VacA toxin secreted by Helicobacter pylori enhances the ability of the bacteria to colonize the stomach and contributes to the pathogenesis of gastric adenocarcinoma and peptic ulcer disease. The amino acid sequence and structure of VacA are unrelated to corresponding features of other known bacterial toxins. VacA is classified as a pore-forming toxin, and many of its effects on host cells are attributed to formation of channels in intracellular sites. The most extensively studied VacA activity is its capacity to stimulate vacuole formation, but the toxin has many additional effects on host cells. Multiple cell types are susceptible to VacA, including gastric epithelial cells, parietal cells, T cells, and other types of immune cells. This review focuses on the wide range of VacA actions that are detectable in vitro, as well as actions of VacA in vivo that are relevant for H. pylori colonization of the stomach and development of gastric disease.


Assuntos
Proteínas de Bactérias , Toxinas Bacterianas , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/toxicidade , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Toxinas Bacterianas/toxicidade , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Humanos , Canais Iônicos/metabolismo , Conformação Proteica , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa