Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 179(3): 969-985, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30397021

RESUMO

Edible berries are considered to be among nature's treasure chests as they contain a large number of (poly)phenols with potentially health-promoting properties. However, as berries contain complex (poly)phenol mixtures, it is challenging to associate any interesting pharmacological activity with a single compound. Thus, identification of pharmacologically interesting phenols requires systematic analyses of berry extracts. Here, raspberry (Rubus idaeus, var Prestige) extracts were systematically analyzed to identify bioactive compounds against pathological processes of neurodegenerative diseases. Berry extracts were tested on different Saccharomyces cerevisiae strains expressing disease proteins associated with Alzheimer's, Parkinson's, or Huntington's disease, or amyotrophic lateral sclerosis. After identifying bioactivity against Huntington's disease, the extract was fractionated and the obtained fractions were tested in the yeast model, which revealed that salidroside, a glycosylated phenol, displayed significant bioactivity. Subsequently, a metabolic route to salidroside was reconstructed in S cerevisiae and Corynebacterium glutamicum The best-performing S cerevisiae strain was capable of producing 2.1 mm (640 mg L-1) salidroside from Glc in shake flasks, whereas an engineered C glutamicum strain could efficiently convert the precursor tyrosol to salidroside, accumulating up to 32 mm (9,700 mg L-1) salidroside in bioreactor cultivations (yield: 0.81 mol mol-1). Targeted yeast assays verified that salidroside produced by both organisms has the same positive effects as salidroside of natural origin.


Assuntos
Glucosídeos/biossíntese , Proteína Huntingtina/química , Doença de Huntington/metabolismo , Extratos Vegetais/química , Rubus/química , Vias Biossintéticas , Fracionamento Químico , Glucosídeos/química , Glucosídeos/metabolismo , Modelos Biológicos , Fenóis/química , Fenóis/metabolismo , Extratos Vegetais/isolamento & purificação , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
2.
BMC Genomics ; 20(1): 995, 2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31856735

RESUMO

BACKGROUND: Flavonoids are produced in all flowering plants in a wide range of tissues including in berry fruits. These compounds are of considerable interest for their biological activities, health benefits and potential pharmacological applications. However, transcriptomic and genomic resources for wild and cultivated berry fruit species are often limited, despite their value in underpinning the in-depth study of metabolic pathways, fruit ripening as well as in the identification of genotypes rich in bioactive compounds. RESULTS: To access the genetic diversity of wild and cultivated berry fruit species that accumulate high levels of phenolic compounds in their fleshy berry(-like) fruits, we selected 13 species from Europe, South America and Asia representing eight genera, seven families and seven orders within three clades of the kingdom Plantae. RNA from either ripe fruits (ten species) or three ripening stages (two species) as well as leaf RNA (one species) were used to construct, assemble and analyse de novo transcriptomes. The transcriptome sequences are deposited in the BacHBerryGEN database (http://jicbio.nbi.ac.uk/berries) and were used, as a proof of concept, via its BLAST portal (http://jicbio.nbi.ac.uk/berries/blast.html) to identify candidate genes involved in the biosynthesis of phenylpropanoid compounds. Genes encoding regulatory proteins of the anthocyanin biosynthetic pathway (MYB and basic helix-loop-helix (bHLH) transcription factors and WD40 repeat proteins) were isolated using the transcriptomic resources of wild blackberry (Rubus genevieri) and cultivated red raspberry (Rubus idaeus cv. Prestige) and were shown to activate anthocyanin synthesis in Nicotiana benthamiana. Expression patterns of candidate flavonoid gene transcripts were also studied across three fruit developmental stages via the BacHBerryEXP gene expression browser (http://www.bachberryexp.com) in R. genevieri and R. idaeus cv. Prestige. CONCLUSIONS: We report a transcriptome resource that includes data for a wide range of berry(-like) fruit species that has been developed for gene identification and functional analysis to assist in berry fruit improvement. These resources will enable investigations of metabolic processes in berries beyond the phenylpropanoid biosynthetic pathway analysed in this study. The RNA-seq data will be useful for studies of berry fruit development and to select wild plant species useful for plant breeding purposes.


Assuntos
Flavonoides/biossíntese , Frutas/genética , Genes de Plantas , Rubus/genética , Transcriptoma , Antocianinas/biossíntese , Vias Biossintéticas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Magnoliopsida/classificação , Magnoliopsida/genética , Fenóis/análise , Filogenia , Proteínas de Plantas/genética , RNA-Seq , Rubus/química , Rubus/crescimento & desenvolvimento , Rubus/metabolismo
3.
Metab Eng ; 54: 160-169, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30978503

RESUMO

Plant material rich in anthocyanins has been historically used in traditional medicines, but only recently have the specific pharmacological properties of these compounds been the target of extensive studies. In addition to their potential to modulate the development of various diseases, coloured anthocyanins are valuable natural alternatives commonly used to replace synthetic colourants in food industry. Exploitation of microbial hosts as cell factories is an attractive alternative to extraction of anthocyanins and other flavonoids from plant sources or chemical synthesis. In this study, we present the lactic acid bacterium Lactococcus lactis as an ideal host for the production of high-value plant-derived bioactive anthocyanins using green tea as substrate. Besides the anticipated red-purple compounds cyanidin and delphinidin, orange and yellow pyranoanthocyanidins with unexpected methylation patterns were produced from green tea by engineered L. lactis strains. The pyranoanthocyanins are currently attracting significant interest as one of the most important classes of anthocyanin derivatives and are mainly formed during the aging of wine, contributing to both colour and sensory experience.


Assuntos
Antocianinas , Lactococcus lactis , Engenharia Metabólica , Chá/química , Antocianinas/biossíntese , Antocianinas/genética , Lactococcus lactis/genética , Lactococcus lactis/metabolismo
4.
Metabolomics ; 15(1): 12, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30830439

RESUMO

INTRODUCTION: Blackcurrant (Ribes nigrum L.) is an excellent example of a "super fruit" with potential health benefits. Both genotype and cultivation environment are known to affect the chemical composition of blackcurrant, especially ascorbic acid and various phenolic compounds. Environmental conditions, like temperature, solar radiation and precipitation can also have significant impact on fruit chemical composition. The relevance of the study is further accentuated by the predicted and ongoing changes in global climate. OBJECTIVES: The aim of the present study was to provide new knowledge and a deeper understanding of the effects of post flowering environmental conditions, namely temperature and day length, on fruit quality and chemical composition of blackcurrant using an untargeted high performance liquid chromatography-photo diode array-mass spectrometry (HPLC-PDA-MS) metabolomics approach. METHODS: A phytotron experiment with cultivation of single-stemmed potted plants of blackcurrant cv. Narve Viking was conducted using constant temperatures of 12, 18 or 24 °C and three different photoperiods (short day, short day with night interruption, and natural summer daylight conditions). Plants were also grown under ambient outdoor conditions. Ripe berries were analysed using an untargeted HPLC-PDA-MS metabolomics approach to detect the presence and concentration of molecules as affected by controlled climatic factors. RESULTS: The untargeted metabolomics dataset contained a total of 7274 deconvolved retention time-m/z pairs across both electrospray ionisation (ESI) positive and negative polarities, from which 549 metabolites were identified or minimally annotated based upon accurate mass MS. Conventional principal component analysis (PCA) in combination with the Friedman significance test were applied to first identify which metabolites responded to temperature in a linear fashion. Multi-block hierarchical PCA in combination with the Friedman significance test was secondly applied to identify metabolites that were responsive to different day length conditions. Temperature had significant effect on a total of 365 metabolites representing a diverse range of chemical classes. It was observed that ripening of the blackcurrant berries under ambient conditions, compared to controlled conditions, resulted in an increased accumulation of 34 annotated metabolites, mainly anthocyanins and flavonoids. 18 metabolites were found to be regulated differentially under the different daylength conditions. Moreover, based upon the most abundant anthocyanins, a comparison between targeted and untargeted analyses, revealed a close convergence of the two analytical methods. Therefore, the study not just illustrates the value of non-targeted metabolomics approaches with respect to the huge diversity and numbers of significantly changed metabolites detected (and which would be missed by conventional targeted analyses), but also shows the validity of the non-targeted approach with respect to its precision compared to targeted analyses. CONCLUSIONS: Blackcurrant maturation under controlled ambient conditions revealed a number of insightful relationships between environment and chemical composition of the fruit. A prominent reduction of the most abundant anthocyanins under the highest temperature treatments indicated that blackcurrant berries in general may accumulate lower total anthocyanins in years with extreme hot summer conditions. HPLC-PDA-MS metabolomics is an excellent method for broad analysis of chemical composition of berries rich in phenolic compounds. Moreover, the experiment in controlled phytotron conditions provided additional knowledge concerning plant interactions with the environment.


Assuntos
Ribes/crescimento & desenvolvimento , Ribes/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Ritmo Circadiano/fisiologia , Flavonoides/metabolismo , Frutas/química , Frutas/genética , Frutas/metabolismo , Interação Gene-Ambiente , Metabolômica/métodos , Fenóis/metabolismo , Ribes/genética , Espectrometria de Massas por Ionização por Electrospray/métodos , Temperatura
5.
BMC Genet ; 18(1): 84, 2017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-29017444

RESUMO

BACKGROUND: Recent advances in the mapping of biochemical traits have been reported in Lolium perenne. Although the mapped traits, including individual sugars and fatty acids, contribute greatly towards ruminant productivity, organic acids and amino acids have been largely understudied despite their influence on the ruminal microbiome. RESULTS: In this study, we used a targeted gas-chromatography mass spectrometry (GC-MS) approach to profile the levels of 25 polar metabolites from different classes (sugars, amino acids, phenolic acids, organic acids and other nitrogen-containing compounds) present in a L. perenne F2 population consisting of 325 individuals. A quantitative trait (QTL) mapping approach was applied and successfully identified QTLs regulating seven of those polar metabolites (L-serine, L-leucine, glucose, fructose, myo-inositol, citric acid and 2, 3-hydroxypropanoic acid).Two QTL mapping approaches were carried out using SNP markers on about half of the population only and an imputation approach using SNP and DArT markers on the entire population. The imputation approach confirmed the four QTLs found in the SNP-only analysis and identified a further seven QTLs. CONCLUSIONS: These results highlight the potential of utilising molecular assisted breeding in perennial ryegrass to modulate a range of biochemical quality traits with downstream effects in livestock productivity and ruminal digestion.


Assuntos
Mapeamento Cromossômico/métodos , Lolium/genética , Metabolômica/métodos , Melhoramento Vegetal/métodos , Locos de Características Quantitativas , Genes de Plantas , Ligação Genética , Lolium/crescimento & desenvolvimento , Polimorfismo de Nucleotídeo Único , Característica Quantitativa Herdável
6.
Nat Commun ; 14(1): 1918, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024503

RESUMO

Parkinson's Disease (PD) is a common neurodegenerative disorder affecting millions of people worldwide for which there are only symptomatic therapies. Small molecules able to target key pathological processes in PD have emerged as interesting options for modifying disease progression. We have previously shown that a (poly)phenol-enriched fraction (PEF) of Corema album L. leaf extract modulates central events in PD pathogenesis, namely α-synuclein (αSyn) toxicity, aggregation and clearance. PEF was now subjected to a bio-guided fractionation with the aim of identifying the critical bioactive compound. We identified genipin, an iridoid, which relieves αSyn toxicity and aggregation. Furthermore, genipin promotes metabolic alterations and modulates lipid storage and endocytosis. Importantly, genipin was able to prevent the motor deficits caused by the overexpression of αSyn in a Drosophila melanogaster model of PD. These findings widens the possibility for the exploitation of genipin for PD therapeutics.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Animais , alfa-Sinucleína/metabolismo , Drosophila melanogaster/metabolismo , Doença de Parkinson/metabolismo , Iridoides/farmacologia , Fenóis , Lipídeos
7.
Nat Commun ; 13(1): 3443, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35710760

RESUMO

A prerequisite to exploiting soil microbes for sustainable crop production is the identification of the plant genes shaping microbiota composition in the rhizosphere, the interface between roots and soil. Here, we use metagenomics information as an external quantitative phenotype to map the host genetic determinants of the rhizosphere microbiota in wild and domesticated genotypes of barley, the fourth most cultivated cereal globally. We identify a small number of loci with a major effect on the composition of rhizosphere communities. One of those, designated the QRMC-3HS, emerges as a major determinant of microbiota composition. We subject soil-grown sibling lines harbouring contrasting alleles at QRMC-3HS and hosting contrasting microbiotas to comparative root RNA-seq profiling. This allows us to identify three primary candidate genes, including a Nucleotide-Binding-Leucine-Rich-Repeat (NLR) gene in a region of structural variation of the barley genome. Our results provide insights into the footprint of crop improvement on the plant's capacity of shaping rhizosphere microbes.


Assuntos
Hordeum , Microbiota , Bactérias/genética , Genes de Plantas/genética , Hordeum/genética , Microbiota/genética , Raízes de Plantas/genética , Rizosfera , Solo/química , Microbiologia do Solo
8.
Ann Bot ; 107(2): 243-54, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21148585

RESUMO

BACKGROUND AND AIMS: Improving phosphorus (P) nutrient efficiency in Lolium perenne (perennial ryegrass) is likely to result in considerable economic and ecological benefits. To date, research into the molecular and biochemical response of perennial ryegrass to P deficiency has been limited, particularly in relation to the early response mechanisms. This study aimed to identify molecular mechanisms activated in response to the initial stages of P deficiency. METHODS: A barley microarray was successfully used to study gene expression in perennial ryegrass and this was complemented with gas chromatography-mass spectrometry metabolic profiling to obtain an overview of the plant response to early stages of P deficiency. KEY RESULTS: After 24 h of P deficiency, internal phosphate concentrations were reduced and significant alterations were detected in the metabolome and transcriptome of two perennial ryegrass genotypes. Results indicated a replacement of phospholipids with sulfolipids and the utilization of glycolytic bypasses in response to P deficiency in perennial ryegrass. CONCLUSIONS: The transcriptome and metabolome of perennial ryegrass undergo changes in response to reductions in P supply after 24 h.


Assuntos
Lolium/genética , Lolium/metabolismo , Fósforo/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Perfilação da Expressão Gênica , Genoma de Planta , Genótipo , Metaboloma , Análise de Sequência com Séries de Oligonucleotídeos , Compostos Organofosforados/metabolismo
9.
Antioxidants (Basel) ; 9(9)2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32858836

RESUMO

Plants are a reservoir of high-value molecules with underexplored biomedical applications. With the aim of identifying novel health-promoting attributes in underexplored natural sources, we scrutinized the diversity of (poly)phenols present within the berries of selected germplasm from cultivated, wild, and underutilized Rubus species. Our strategy combined the application of metabolomics, statistical analysis, and evaluation of (poly)phenols' bioactivity using a yeast-based discovery platform. We identified species as sources of (poly)phenols interfering with pathological processes associated with redox-related diseases, particularly, amyotrophic lateral sclerosis, cancer, and inflammation. In silico prediction of putative bioactives suggested cyanidin-hexoside as an anti-inflammatory molecule which was validated in yeast and mammalian cells. Moreover, cellular assays revealed that the cyanidin moiety was responsible for the anti-inflammatory properties of cyanidin-hexoside. Our findings unveiled novel (poly)phenolic bioactivities and illustrated the power of our integrative approach for the identification of dietary (poly)phenols with potential biomedical applications.

10.
Food Chem ; 330: 127227, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32521402

RESUMO

A hydroxycinnamate-like component was identified in highbush blueberry (Vaccinium corymbosum) fruit, which had identical UV and mass spectrometric properties to an S-linked glutathionyl conjugate of chlorogenic acid synthesized using a peroxidase-catalyzed reaction. The conjugate was present in fruits from all highbush blueberry genotypes grown in one season, reaching 7-20% of the relative abundance of 5-caffeoylquininc acid. It was enriched, along with anthocyanins, by fractionation on solid phase cation-exchange units. Mining of pre-existing LC-MS data confirmed that this conjugate was ubiquitous in highbush blueberries, but also present in other Vaccinium species. Similar data mining identified this conjugate in potato tubers with enrichment in peel tissues. In addition, the conjugate was also present in commercial apple juice and was stable to pasteurization and storage. Although glutathionyl conjugates of hydroxycinnamic acids have been noted previously, this is the first report of glutathionyl conjugates of chlorogenic acids in commonly-eaten fruits and vegetables.


Assuntos
Mirtilos Azuis (Planta)/química , Ácido Clorogênico/análise , Sucos de Frutas e Vegetais/análise , Malus/química , Solanum tuberosum/química , Antocianinas/análise , Frutas/química , Tubérculos/química
11.
Plant Biotechnol J ; 7(8): 719-32, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19702648

RESUMO

Metabolic profiling was carried out in the forage grass Lolium perenne L. (perennial ryegrass) to uncover mechanisms involved in the plants response to water stress. When leaf and root materials from two genotypes, with a contrasting water stress response, were analysed by GC-MS, a clear difference in the metabolic profiles of the leaf tissue under water stress was observed. Differences were principally due to a reduction in fatty acid levels in the more susceptible Cashel genotype and an increase in sugars and compatible solutes in the more tolerant PI 462336 genotype. Sugars with a significant increase included: raffinose, trehalose, glucose, fructose and maltose. Increasing the ability of perennial ryegrass to accumulate these sugars in response to a water deficit may lead to more tolerant varieties. The metabolomics approach was combined with a transcriptomics approach in the water stress tolerant genotype PI 462336, which has identified perennial ryegrass genes regulated under water stress.


Assuntos
Desidratação/metabolismo , Lolium/fisiologia , Metaboloma , Desidratação/induzido quimicamente , Cromatografia Gasosa-Espectrometria de Massas , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Genótipo , Lolium/genética , Lolium/metabolismo , Metabolômica , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Polietilenoglicóis/farmacologia , Regulação para Cima
12.
Nutrients ; 11(11)2019 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-31684148

RESUMO

Diets rich in (poly)phenols are associated with a reduced reduction in the incidence of cardiovascular disorders. While the absorption and metabolism of (poly)phenols has been described, it is not clear how their metabolic fate is affected under pathological conditions. This study evaluated the metabolic fate of berry (poly)phenols in an in vivo model of hypertension as well as the associated microbiota response. Dahl salt-sensitive rats were fed either a low-salt diet (0.26% NaCl) or a high-salt diet (8% NaCl), with or without a berry mixture (blueberries, blackberries, raspberries, Portuguese crowberry and strawberry tree fruit) for 9 weeks. The salt-enriched diet promoted an increase in the urinary excretion of berry (poly)phenol metabolites, while the abundance of these metabolites decreased in faeces, as revealed by UPLC-MS/MS. Moreover, salt and berries modulated gut microbiota composition as demonstrated by 16S rRNA analysis. Some changes in the microbiota composition were associated with the high-salt diet and revealed an expansion of the families Proteobacteria and Erysipelotrichaceae. However, this effect was mitigated by the dietary supplementation with berries. Alterations in the metabolic fate of (poly)phenols occur in parallel with the modulation of gut microbiota in hypertensive rats. Thus, beneficial effects of (poly)phenols could be related with these interlinked modifications, between metabolites and microbiota environments.


Assuntos
Frutas , Microbioma Gastrointestinal/fisiologia , Fenóis/metabolismo , Animais , Dieta , Disbiose/metabolismo , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Glicosídeos/metabolismo , Masculino , Fenóis/análise , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/metabolismo , Ratos , Ratos Endogâmicos Dahl , Sódio na Dieta
13.
Curr Pharm Des ; 24(19): 2043-2054, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29766789

RESUMO

Plants and crops contain a staggering diversity of compounds, many of which have pharmacological activity towards a variety of diseases. These properties have been exploited by traditional and modern medicine providing important sources of healthcare to this day. The contribution of natural products (such as plant-derived) to the modern pharmacopeia is indeed significant; however, the process of identifying novel bioactive compounds from biological sources has been a central challenge in the discovery of natural products. The resolution of these challenges relied extensively on the use of hyphenated Mass Spectrometry (MS) and Nuclear Magnetic Resonance (NMR)-based analytical technologies for the structural elucidation and annotation of novel compounds. Technical developments in instrumentation and data processing have fostered the development of the field of metabolomics which provides a wealth of tools with the huge potential for application in the process of drug/bioactive discovery from plant tissues. This manuscript provides an overview of the metabolomics toolbox available for the discovery of novel bioactive compounds and the integration of these tools in the bioprospection and drug discovery workflows.


Assuntos
Ensaios de Triagem em Larga Escala , Metabolômica , Plantas/metabolismo , Animais , Humanos , Plantas/química
14.
J Agric Food Chem ; 66(4): 831-841, 2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-29257861

RESUMO

The reduction of the environmental footprint of crop production without compromising crop yield and their nutritional value is a key goal for improving the sustainability of agriculture. In 2009, the Balruddery Farm Platform was established at The James Hutton Institute as a long-term experimental platform for cross-disciplinary research of crops using two agricultural ecosystems. Crops representative of UK agriculture were grown under conventional and integrated management systems and analyzed for their water-soluble vitamin content. Integrated management, when compared with the conventional system, had only minor effects on water-soluble vitamin content, where significantly higher differences were seen for the conventional management practice on the levels of thiamine in field beans (p < 0.01), Spring barley (p < 0.05), and Winter wheat (p < 0.05), and for nicotinic acid in Spring barley (p < 0.05). However, for all crops, variety and year differences were of greater importance. These results indicate that the integrated management system described in this study does not significantly affect the water-soluble vitamin content of the crops analyzed here.


Assuntos
Agricultura/métodos , Produtos Agrícolas/química , Grão Comestível/química , Solanum tuberosum/química , Vicia faba/química , Vitaminas/análise , Ácido Ascórbico/análise , Hordeum/química , Niacina/análise , Valor Nutritivo , Estações do Ano , Tiamina/análise , Triticum/química , Reino Unido , Complexo Vitamínico B/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa