Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Nucleic Acids Res ; 52(D1): D311-D321, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37602392

RESUMO

Discoveries over the recent decade have demonstrated the unexpected diversity of telomere DNA motifs in nature. However, currently available resources, 'Telomerase database' and 'Plant rDNA database', contain just fragments of all relevant literature published over decades of telomere research as they have a different primary focus and limited updates. To fill this gap, we gathered data about telomere DNA sequences from a thorough literature screen as well as by analysing publicly available NGS data, and we created TeloBase (http://cfb.ceitec.muni.cz/telobase/) as a comprehensive database of information about telomere motif diversity. TeloBase is supplemented by internal taxonomy utilizing popular on-line taxonomic resources that enables in-house data filtration and graphical visualisation of telomere DNA evolutionary dynamics in the form of heat tree plots. TeloBase avoids overreliance on administrators for future data updates by having a simple form and community-curation system for application and approval, respectively, of new telomere sequences by users, which should ensure timeliness of the database and topicality. To demonstrate TeloBase utility, we examined telomere motif diversity in species from the fungal genus Aspergillus, and discovered (TTTATTAGGG)n sequence as a putative telomere motif in the plant family Chrysobalanaceae. This was bioinformatically confirmed by analysing template regions of identified telomerase RNAs.


Assuntos
Bases de Dados Genéticas , Telomerase , Motivos de Nucleotídeos , Plantas/genética , Telomerase/genética , Telômero/genética , Telômero/metabolismo
2.
Nucleic Acids Res ; 49(13): 7680-7694, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34181710

RESUMO

The enormous sequence heterogeneity of telomerase RNA (TR) subunits has thus far complicated their characterization in a wider phylogenetic range. Our recent finding that land plant TRs are, similarly to known ciliate TRs, transcribed by RNA polymerase III and under the control of the type-3 promoter, allowed us to design a novel strategy to characterize TRs in early diverging Viridiplantae taxa, as well as in ciliates and other Diaphoretickes lineages. Starting with the characterization of the upstream sequence element of the type 3 promoter that is conserved in a number of small nuclear RNAs, and the expected minimum TR template region as search features, we identified candidate TRs in selected Diaphoretickes genomes. Homologous TRs were then used to build covariance models to identify TRs in more distant species. Transcripts of the identified TRs were confirmed by transcriptomic data, RT-PCR and Northern hybridization. A templating role for one of our candidates was validated in Physcomitrium patens. Analysis of secondary structure demonstrated a deep conservation of motifs (pseudoknot and template boundary element) observed in all published TRs. These results elucidate the evolution of the earliest eukaryotic TRs, linking the common origin of TRs across Diaphoretickes, and underlying evolutionary transitions in telomere repeats.


Assuntos
Evolução Molecular , RNA de Plantas/química , RNA de Plantas/genética , RNA/química , RNA/genética , Telomerase/química , Telomerase/genética , Mutação , Conformação de Ácido Nucleico , RNA/biossíntese , RNA Polimerase II/metabolismo , RNA Polimerase III/metabolismo , RNA de Plantas/biossíntese , Alinhamento de Sequência , Telomerase/biossíntese , Telômero/química , Transcrição Gênica , Transcriptoma , Viridiplantae/genética
3.
BMC Bioinformatics ; 22(1): 145, 2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33752601

RESUMO

BACKGROUND: Telomeres, nucleoprotein structures comprising short tandem repeats and delimiting the ends of linear eukaryotic chromosomes, play an important role in the maintenance of genome stability. Therefore, the determination of the length of telomeres is of high importance for many studies. Over the last years, new methods for the analysis of the length of telomeres have been developed, including those based on PCR or analysis of NGS data. Despite that, terminal restriction fragment (TRF) method remains the gold standard to this day. However, this method lacks universally accepted and precise tool capable to analyse and statistically evaluate TRF results. RESULTS: To standardize the processing of TRF results, we have developed WALTER, an online toolset allowing rapid, reproducible, and user-friendly analysis including statistical evaluation of the data. Given its web-based nature, it provides an easily accessible way to analyse TRF data without any need to install additional software. CONCLUSIONS: WALTER represents a major upgrade from currently available tools for the image processing of TRF scans. This toolset enables a rapid, highly reproducible, and user-friendly evaluation of almost any TRF scan including in-house statistical evaluation of the data. WALTER platform together with user manual describing the evaluation of TRF scans in detail and presenting tips and troubleshooting, as well as test data to demo the software are available at https://www.ceitec.eu/chromatin-molecular-complexes-jiri-fajkus/rg51/tab?tabId=125#WALTER and the source code at https://github.com/mlyc93/WALTER .


Assuntos
Software , Telômero , Telômero/genética
4.
Plant J ; 102(4): 678-687, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31834959

RESUMO

Telomeres, nucleoprotein structures at the ends of linear eukaryotic chromosomes, are crucial for the maintenance of genome integrity. In most plants, telomeres consist of conserved tandem repeat units comprising the TTTAGGG motif. Recently, non-canonical telomeres were described in several plants and plant taxons, including the carnivorous plant Genlisea hispidula (TTCAGG/TTTCAGG), the genus Cestrum (Solanaceae; TTTTTTAGGG), and plants from the Asparagales order with either a vertebrate-type telomere repeat TTAGGG or Allium genus-specific CTCGGTTATGGG repeat. We analyzed epigenetic modifications of telomeric histones in plants with canonical and non-canonical telomeres, and further in telomeric chromatin captured from leaves of Nicotiana benthamiana transiently transformed by telomere CRISPR-dCas9-eGFP, and of Arabidopsis thaliana stably transformed with TALE_telo C-3×GFP. Two combinatorial patterns of telomeric histone modifications were identified: (i) an Arabidopsis-like pattern (A. thaliana, G. hispidula, Genlisea nigrocaulis, Allium cepa, Narcissus pseudonarcissus, Petunia hybrida, Solanum tuberosum, Solanum lycopersicum) with telomeric histones decorated predominantly by H3K9me2; (ii) a tobacco-like pattern (Nicotiana tabacum, N. benthamiana, C. elegans) with a strong H3K27me3 signal. Our data suggest that epigenetic modifications of plant telomere-associated histones are related neither to the sequence of the telomere motif nor to the lengths of the telomeres. Nor the phylogenetic position of the species plays the role; representatives of the Solanaceae family are included in both groups. As both patterns of histone marks are compatible with fully functional telomeres in respective plants, we conclude that the described specific differences in histone marks are not critical for telomere functions.


Assuntos
Epigenômica , Código das Histonas/genética , Plantas/genética , Telômero/genética , Arabidopsis/genética , Cromatina/genética , Filogenia , Nicotiana/genética
5.
Nucleic Acids Res ; 47(18): 9842-9856, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31392988

RESUMO

To elucidate the molecular nature of evolutionary changes of telomeres in the plant order Asparagales, we aimed to characterize telomerase RNA subunits (TRs) in these plants. The unusually long telomere repeat unit in Allium plants (12 nt) allowed us to identify TRs in transcriptomic data of representative species of the Allium genus. Orthologous TRs were then identified in Asparagales plants harbouring telomere DNA composed of TTAGGG (human type) or TTTAGGG (Arabidopsis-type) repeats. Further, we identified TRs across the land plant phylogeny, including common model plants, crop plants, and plants with unusual telomeres. Several lines of functional testing demonstrate the templating telomerase function of the identified TRs and disprove a functionality of the only previously reported plant telomerase RNA in Arabidopsis thaliana. Importantly, our results change the existing paradigm in plant telomere biology which has been based on the existence of a relatively conserved telomerase reverse transcriptase subunit (TERT) associating with highly divergent TRs even between closely related plant taxa. The finding of a monophyletic origin of genuine TRs across land plants opens the possibility to identify TRs directly in transcriptomic or genomic data and/or predict telomere sequences synthesized according to the respective TR template region.


Assuntos
Evolução Molecular , Filogenia , RNA/genética , Telomerase/genética , Telômero/genética , Allium/genética , Arabidopsis/genética , Asparagales/genética , Embriófitas/genética , Genoma de Planta/genética , Humanos
6.
Int J Mol Sci ; 22(1)2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33466545

RESUMO

Involvement of epigenetic mechanisms in the regulation of telomeres and transposable elements (TEs), genomic regions with the protective and potentially detrimental function, respectively, has been frequently studied. Here, we analyzed telomere lengths in Arabidopsis thaliana plants of Columbia, Landsberg erecta and Wassilevskija ecotypes exposed repeatedly to the hypomethylation drug zebularine during germination. Shorter telomeres were detected in plants growing from seedlings germinated in the presence of zebularine with a progression in telomeric phenotype across generations, relatively high inter-individual variability, and diverse responses among ecotypes. Interestingly, the extent of telomere shortening in zebularine Columbia and Wassilevskija plants corresponded to the transcriptional activation of TEs, suggesting a correlated response of these genomic elements to the zebularine treatment. Changes in lengths of telomeres and levels of TE transcripts in leaves were not always correlated with a hypomethylation of cytosines located in these regions, indicating a cytosine methylation-independent level of their regulation. These observations, including differences among ecotypes together with distinct dynamics of the reversal of the disruption of telomere homeostasis and TEs transcriptional activation, reflect a complex involvement of epigenetic processes in the regulation of crucial genomic regions. Our results further demonstrate the ability of plant cells to cope with these changes without a critical loss of the genome stability.


Assuntos
Arabidopsis/genética , Citidina/análogos & derivados , Elementos de DNA Transponíveis/genética , Telômero/genética , Arabidopsis/metabolismo , Citidina/genética , Citosina/metabolismo , Metilação de DNA/genética , Epigênese Genética/genética , Células Vegetais/metabolismo , Homeostase do Telômero/genética , Encurtamento do Telômero/genética , Ativação Transcricional/genética
7.
Plant J ; 98(6): 1090-1105, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30834585

RESUMO

Telomeres and ribosomal RNA genes (rDNA) are essential for cell survival and particularly sensitive to factors affecting genome stability. Here, we examine the role of RAD51 and its antagonist, RTEL1, in the moss Physcomitrella patens. In corresponding mutants, we analyse their sensitivity to DNA damage, the maintenance of telomeres and rDNA, and repair of double-stranded breaks (DSBs) induced by genotoxins with various modes of action. While the loss of RTEL1 results in rapid telomere shortening, concurrent loss of both RAD51 genes has no effect on telomere lengths. We further demonstrate here the linked arrangement of 5S and 45S rRNA genes in P. patens. The spacer between 5S and 18S rRNA genes, especially the region downstream from the transcription start site, shows conspicuous clustering of sites with a high propensity to form quadruplex (G4) structures. Copy numbers of 5S and 18S rDNA are reduced moderately in the pprtel1 mutant, and significantly in the double pprad51-1-2 mutant, with no progression during subsequent cultivation. While reductions in 45S rDNA copy numbers observed in pprtel1 and pprad51-1-2 plants apply also to 5S rDNA, changes in transcript levels are different for 45S and 5S rRNA, indicating their independent transcription by RNA polymerase I and III, respectively. The loss of SOL (Sog One-Like), a transcription factor regulating numerous genes involved in DSB repair, increases the rate of DSB repair in dividing as well as differentiated tissue, and through deactivation of G2/M cell-cycle checkpoint allows the cell-cycle progression manifested as a phenotype resistant to bleomycin.


Assuntos
Bryopsida/enzimologia , DNA Ribossômico/genética , Instabilidade Genômica , Telômero/genética , Bryopsida/genética , DNA Helicases/genética , DNA Helicases/metabolismo , Loci Gênicos , Mutação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Ribossômico/genética , RNA Ribossômico 18S/genética , RNA Ribossômico 5S/genética , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
Int J Mol Sci ; 21(8)2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32316114

RESUMO

The ever-increasing interest in epigenetics comes from the fact that in the diverse life situations of organisms, e [...].


Assuntos
Epigênese Genética , Plantas/metabolismo , Cromatina/metabolismo , Metilação de DNA , Processamento de Proteína Pós-Traducional
9.
Int J Mol Sci ; 20(20)2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31615119

RESUMO

A high degree of developmental plasticity enables plants to adapt to continuous, often unfavorable and unpredictable changes in their environment. At the molecular level, adaptive advantages for plants are primarily provided by epigenetic machinery including DNA methylation, histone modifications, and the activity of noncoding RNA molecules. Using a mass spectrometry-based proteomic approach, we examined the levels of acetylated histone peptide forms in Arabidopsis plants with a loss of function of histone deacetylase 6 (HDA6), and in plants germinated in the presence of HDA inhibitors trichostatin A (TSA) and sodium butyrate (NaB). Our analyses revealed particular lysine sites at histone sequences targeted by the HDA6 enzyme, and by TSA- and NaB-sensitive HDAs. Compared with plants exposed to drugs, more dramatic changes in the overall profiles of histone post-translational modifications were identified in hda6 mutants. However, loss of HDA6 was not sufficient by itself to induce hyperacetylation to the maximum degree, implying complementary activities of other HDAs. In contrast to hda6 mutants that did not exhibit any obvious phenotypic defects, the phenotypes of seedlings exposed to HDA inhibitors were markedly affected, showing that the effect of these drugs on early plant development is not limited to the modulation of histone acetylation levels.


Assuntos
Proteínas de Arabidopsis/genética , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/genética , Desenvolvimento Vegetal/genética , Proteômica , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/antagonistas & inibidores , Ácido Butírico/farmacologia , Metilação de DNA/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Germinação/genética , Código das Histonas/efeitos dos fármacos , Código das Histonas/genética , Ácidos Hidroxâmicos/farmacologia , Desenvolvimento Vegetal/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/genética
10.
Plant Mol Biol ; 98(1-2): 81-99, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30128721

RESUMO

KEY MESSAGE: Standard pathways involved in the regulation of telomere stability do not contribute to gradual telomere elongation observed in the course of A. thaliana calli propagation. Genetic and epigenetic changes accompanying the culturing of plant cells have frequently been reported. Here we aimed to characterize the telomere homeostasis during long term callus propagation. While in Arabidopsis thaliana calli gradual telomere elongation was observed, telomeres were stable in Nicotiana tabacum and N. sylvestris cultures. Telomere elongation during callus propagation is thus not a general feature of plant cells. The long telomere phenotype in Arabidopsis calli was correlated neither with changes in telomerase activity nor with activation of alternative mechanisms of telomere elongation. The dynamics of telomere length changes was maintained in mutant calli with loss of function of important epigenetic modifiers but compromised in the presence of epigenetically active drug zebularine. To examine whether the cell culture-induced disruption of telomere homeostasis is associated with the modulated structure of chromosome ends, epigenetic properties of telomere chromatin were analysed. Albeit distinct changes in epigenetic modifications of telomere histones were observed, these were broadly stochastic. Our results show that contrary to animal cells, the structure and function of plant telomeres is not determined significantly by the epigenetic character of telomere chromatin. Set of differentially transcribed genes was identified in calli, but considering the known telomere- or telomerase-related functions of respective proteins, none of these changes per se was apparently related to the elongated telomere phenotype. Based on our data, we propose that the disruption in telomere homeostasis in Arabidopsis calli arises from the interplay of multiple factors, as a part of reprogramming of plant cells to long-term culture conditions.


Assuntos
Arabidopsis/metabolismo , Homeostase do Telômero , Telômero/metabolismo , Técnicas de Cultura de Tecidos , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromatina/genética , Citidina/análogos & derivados , Citidina/farmacologia , Ecótipo , Epigênese Genética/efeitos dos fármacos , Genes de Plantas , Histonas/metabolismo , Mutação/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regeneração/efeitos dos fármacos , Especificidade da Espécie , Telomerase/metabolismo , Homeostase do Telômero/efeitos dos fármacos , Nicotiana/genética
11.
Planta ; 245(3): 549-561, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27900472

RESUMO

MAIN CONCLUSION: In tobacco, three sequence variants of the TERT gene have been described. We revealed unbalanced levels of TERT variant transcripts in vegetative tobacco tissues and enhanced TERT transcription and telomerase activity in reproductive tissues. Telomerase is a ribonucleoprotein complex responsible for the maintenance of telomeres, structures delimiting ends of linear eukaryotic chromosomes. In the Nicotiana tabacum (tobacco) allotetraploid plant, three sequence variants (paralogs) of the gene coding for the telomerase reverse transcriptase subunit (TERT) have been described, two of them derived from the maternal N. sylvestris genome (TERT_Cs, TERT_D) and one originated from the N. tomentosiformis paternal genome (TERT_Ct). In this work, we analyzed the transcription of TERT variants in correlation with telomerase activity in tobacco tissues. High and approximately comparable levels of TERT_Ct and TERT_Cs transcripts were detected in seedlings, roots, flower buds and leaves, while the transcript of the TERT_D variant was markedly underrepresented. Similarly, in N. sylvestris tissues, TERT_Cs transcript significantly predominated. A specific pattern of TERT transcripts was found in samples of tobacco pollen with the TERT_Cs variant clearly dominating particularly at the early stage of pollen development. Detailed analysis of TERT_C variants representation in functionally distinct fractions of pollen transcriptome revealed their prevalence in large ribonucleoprotein particles encompassing translationally silent mRNA; only a minority of TERT_Ct and TERT_Cs transcripts were localized in actively translated polysomes. Histones of the TERT_C chromatin were decorated predominantly with the euchromatin-specific epigenetic modification in both telomerase-positive and telomerase-negative tobacco tissues. We conclude that the existence and transcription pattern of tobacco TERT paralogs represents an interesting phenomenon and our results indicate its functional significance. Nicotiana species have again proved to be appropriate and useful model plants in telomere biology studies.


Assuntos
Regulação da Expressão Gênica de Plantas , Variação Genética , Nicotiana/genética , Especificidade de Órgãos/genética , Telomerase/genética , Núcleo Celular/genética , Imunoprecipitação da Cromatina , Eucromatina/metabolismo , Histonas/metabolismo , Tubo Polínico/crescimento & desenvolvimento , Polirribossomos/metabolismo , Processamento de Proteína Pós-Traducional , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Telomerase/metabolismo , Transcrição Gênica
12.
Plant J ; 83(1): 18-37, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25752316

RESUMO

Telomeres and genes encoding 45S ribosomal RNA (rDNA) are frequently located adjacent to each other on eukaryotic chromosomes. Although their primary roles are different, they show striking similarities with respect to their features and additional functions. Both genome domains have remarkably dynamic chromatin structures. Both are hypersensitive to dysfunctional histone chaperones, responding at the genomic and epigenomic levels. Both generate non-coding transcripts that, in addition to their epigenetic roles, may induce gross chromosomal rearrangements. Both give rise to chromosomal fragile sites, as their replication is intrinsically problematic. However, at the same time, both are essential for maintenance of genomic stability and integrity. Here we discuss the structural and functional inter-connectivity of telomeres and rDNA, with a focus on recent results obtained in plants.


Assuntos
Cromatina/química , DNA Ribossômico/metabolismo , Plantas/genética , Telômero/metabolismo , Cromatina/metabolismo , Replicação do DNA , DNA de Plantas/química , DNA de Plantas/metabolismo , DNA Ribossômico/química , Epigênese Genética , Instabilidade Genômica , Histonas/genética , Histonas/metabolismo , Telômero/genética
13.
Plant J ; 84(6): 1087-99, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26485466

RESUMO

Linear chromosomes of eukaryotic organisms invariably possess centromeres and telomeres to ensure proper chromosome segregation during nuclear divisions and to protect the chromosome ends from deterioration and fusion, respectively. While centromeric sequences may differ between species, with arrays of tandemly repeated sequences and retrotransposons being the most abundant sequence types in plant centromeres, telomeric sequences are usually highly conserved among plants and other organisms. The genome size of the carnivorous genus Genlisea (Lentibulariaceae) is highly variable. Here we study evolutionary sequence plasticity of these chromosomal domains at an intrageneric level. We show that Genlisea nigrocaulis (1C = 86 Mbp; 2n = 40) and G. hispidula (1C = 1550 Mbp; 2n = 40) differ as to their DNA composition at centromeres and telomeres. G. nigrocaulis and its close relative G. pygmaea revealed mainly 161 bp tandem repeats, while G. hispidula and its close relative G. subglabra displayed a combination of four retroelements at centromeric positions. G. nigrocaulis and G. pygmaea chromosome ends are characterized by the Arabidopsis-type telomeric repeats (TTTAGGG); G. hispidula and G. subglabra instead revealed two intermingled sequence variants (TTCAGG and TTTCAGG). These differences in centromeric and, surprisingly, also in telomeric DNA sequences, uncovered between groups with on average a > 9-fold genome size difference, emphasize the fast genome evolution within this genus. Such intrageneric evolutionary alteration of telomeric repeats with cytosine in the guanine-rich strand, not yet known for plants, might impact the epigenetic telomere chromatin modification.


Assuntos
Evolução Biológica , Centrômero/genética , Cromossomos de Plantas/genética , Genoma de Planta/genética , Magnoliopsida/genética , Telômero/genética , Sequência de Bases , Variação Genética , Genoma de Planta/fisiologia , Magnoliopsida/fisiologia , Dados de Sequência Molecular , Especificidade da Espécie , Fatores de Tempo
14.
Plant J ; 82(4): 644-54, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25828846

RESUMO

The characterization of unusual telomere sequence sheds light on patterns of telomere evolution, maintenance and function. Plant species from the closely related genera Cestrum, Vestia and Sessea (family Solanaceae) lack known plant telomeric sequences. Here we characterize the telomere of Cestrum elegans, work that was a challenge because of its large genome size and few chromosomes (1C 9.76 pg; n = 8). We developed an approach that combines BAL31 digestion, which digests DNA from the ends and chromosome breaks, with next-generation sequencing (NGS), to generate data analysed in RepeatExplorer, designed for de novo repeats identification and quantification. We identify an unique repeat motif (TTTTTTAGGG)n in C. elegans, occurring in ca. 30 400 copies per haploid genome, averaging ca. 1900 copies per telomere, and synthesized by telomerase. We demonstrate that the motif is synthesized by telomerase. The occurrence of an unusual eukaryote (TTTTTTAGGG)n telomeric motif in C. elegans represents a switch in motif from the 'typical' angiosperm telomere (TTTAGGG)n . That switch may have happened with the divergence of Cestrum, Sessea and Vestia. The shift in motif when it arose would have had profound effects on telomere activity. Thus our finding provides a unique handle to study how telomerase and telomeres responded to genetic change, studies that will shed more light on telomere function.


Assuntos
Cestrum/genética , Cromossomos de Plantas/genética , Telômero/química , Telômero/genética
15.
Chromosoma ; 124(4): 519-28, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26062516

RESUMO

Species with holocentric chromosomes are often characterized by a rapid karyotype evolution. In contrast to species with monocentric chromosomes where acentric fragments are lost during cell division, breakage of holocentric chromosomes creates fragments with normal centromere activity. To decipher the mechanism that allows holocentric species an accelerated karyotype evolution via chromosome breakage, we analyzed the chromosome complements of irradiated Luzula elegans plants. The resulting chromosomal fragments and rearranged chromosomes revealed holocentromere-typical CENH3 and histone H2AThr120ph signals as well as the same mitotic mobility like unfragmented chromosomes. Newly synthesized telomeres at break points become detectable 3 weeks after irradiation. The presence of active telomerase suggests a telomerase-based mechanism of chromosome healing. A successful transmission of holocentric chromosome fragments across different generations was found for most offspring of irradiated plants. Hence, a combination of holokinetic centromere activity and the fast formation of new telomeres at break points enables holocentric species a rapid karyotype evolution involving chromosome fissions and rearrangements.


Assuntos
Centrômero , Cromossomos de Plantas/genética , Evolução Molecular , Cariótipo , Magnoliopsida/genética , Telômero , Autoantígenos , Proteína Centromérica A , Proteínas Cromossômicas não Histona , Quebra Cromossômica , Histonas , Magnoliopsida/metabolismo , Proteínas de Plantas
16.
Nucleic Acids Res ; 42(5): 2919-31, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24334955

RESUMO

Telomeres, nucleoprotein structures at the ends of linear eukaryotic chromosomes, are important for the maintenance of genomic stability. Telomeres were considered as typical heterochromatic regions, but in light of recent results, this view should be reconsidered. Asymmetrically located cytosines in plant telomeric DNA repeats may be substrates for a DNA methyltransferase enzyme and indeed, it was shown that these repeats are methylated. Here, we analyse the methylation of telomeric cytosines and the length of telomeres in Arabidopsis thaliana methylation mutants (met 1-3 and ddm 1-8), and in their wild-type siblings that were germinated in the presence of hypomethylation drugs. Our results show that cytosine methylation in telomeric repeats depends on the activity of MET1 and DDM1 enzymes. Significantly shortened telomeres occur in later generations of methylation mutants as well as in plants germinated in the presence of hypomethylation drugs, and this phenotype is stably transmitted to the next plant generation. A possible role of compromised in vivo telomerase action in the observed telomere shortening is hypothesized based on telomere analysis of hypomethylated telomerase knockout plants. Results are discussed in connection with previous data in this field obtained using different model systems.


Assuntos
Arabidopsis/genética , Metilação de DNA , Encurtamento do Telômero , Telômero/metabolismo , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Citosina/metabolismo , Plantas/genética , Plantas/metabolismo , Sequências Repetitivas de Ácido Nucleico , Telomerase/metabolismo , Telômero/química , Homeostase do Telômero
17.
Plant Mol Biol ; 87(6): 591-601, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25701469

RESUMO

A comparative approach in biology is needed to assess the universality of rules governing this discipline. In plant telomere research, most of the key principles were established based on studies in only single model plant, Arabidopsis thaliana. These principles include the absence of telomere shortening during plant development and the corresponding activity of telomerase in dividing (meristem) plant cells. Here we examine these principles in Physcomitrella patens as a representative of lower plants. To follow telomerase expression, we first characterize the gene coding for the telomerase reverse transcriptase subunit PpTERT in P. patens, for which only incomplete prediction has been available so far. In protonema cultures of P. patens, growing by filament apical cell division, the proportion of apical (dividing) cells was quantified and telomere length, telomerase expression and activity were determined. Our results show telomere stability and demonstrate proportionality of telomerase activity and expression with the number of apical cells. In addition, we analyze telomere maintenance in mre11, rad50, nbs1, ku70 and lig4 mutants of P. patens and compare the impact of these mutations in double-strand-break (DSB) repair pathways with earlier observations in corresponding A. thaliana mutants. Telomere phenotypes are absent and DSB repair kinetics is not affected in P. patens mutants for DSB factors involved in non-homologous end joining (NHEJ). This is compliant with the overall dominance of homologous recombination over NHEJ pathways in the moss, contrary to the inverse situation in flowering plants.


Assuntos
Bryopsida/genética , Cromossomos de Plantas/genética , Reparo do DNA , Telomerase/genética , Homeostase do Telômero/genética , Telômero/genética , Sequência de Aminoácidos , Arabidopsis/genética , Sequência de Bases , Bryopsida/metabolismo , Quebras de DNA de Cadeia Dupla , DNA de Plantas/genética , Recombinação Homóloga , Dados de Sequência Molecular , Mutação , Fenótipo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Telomerase/metabolismo
18.
Chromosoma ; 122(4): 285-93, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23564254

RESUMO

Dysfunction of chromatin assembly factor 1 in FASCIATA mutants (fas) of Arabidopsis thaliana results in progressive loss of telomeric DNA. Although replicative telomere shortening is typically associated with incomplete resynthesis of their ends by telomerase, no change in telomerase activity could be detected in vitro in extracts from fas mutants. Besides a possible telomerase malfunction, the telomere shortening in fas mutants could presumably be due to problems with conventional replication of telomeres. To distinguish between the possible contribution of suboptimal function of telomerase in fas mutants under in vivo conditions and problems in conventional telomere replication, we crossed fas and tert (telomerase reverse transcriptase) knockout mutants and analyzed telomere shortening in segregated fas mutants, tert mutants, and double fas tert mutants in parallel. We demonstrate that fas tert knockouts show greater replicative telomere shortening than that observed even in the complete absence of telomerase (tert mutants). While the effect of tert and fas mutations on telomere lengths in double mutants is additive, manifestations of telomere dysfunction in double fas tert mutants (frequency of anaphase bridges, onset of chromosome end fusions, and common involvement of 45S rDNA in chromosome fusion sites) are similar to those in tert mutants. We conclude that in addition to possible impairment of telomerase action, a further mechanism contributes to telomere shortening in fas mutants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Mutação , Telomerase/metabolismo , Telômero/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fator 1 de Modelagem da Cromatina/genética , Fator 1 de Modelagem da Cromatina/metabolismo , Cromossomos de Plantas/genética , Cromossomos de Plantas/metabolismo , Fatores de Processamento de RNA , Telomerase/genética , Telômero/genética
19.
Cytogenet Genome Res ; 143(1-3): 125-35, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24714070

RESUMO

As chromatin structures, telomeres undergo epigenetic regulation of their maintenance and function. In plants, these processes are likely of a higher complexity than in animals or yeasts, as exemplified by methylation of cytosines in plant telomeric DNA or reversible developmental regulation of plant telomerase. We highlight the dual role of telomeres from the epigenetic point of view: (i) as chromatin structures that are the subject of epigenetic regulation (e.g. DNA and histone modifications), and (ii) as chromosome domains acting themselves as epigenetic regulatory elements (e.g. in the telomere position effect). Possibly, some molecular tools (e.g. telomeric transcripts) are common to both these aspects of telomere epigenetics. We further discuss the justification for the classical textbook view of telomeres as heterochromatic structures.


Assuntos
Cromossomos de Plantas/genética , Epigênese Genética/genética , Telômero/genética , Animais , Cromatina/genética , Humanos
20.
Plants (Basel) ; 13(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38592918

RESUMO

The current repertoire of methods available for studying RNA-protein interactions in plants is somewhat limited. Employing an RNA-centric approach, particularly with less abundant RNAs, presents various challenges. Many of the existing methods were initially designed for different model systems, with their application in plants receiving limited attention thus far. The Comprehensive Identification of RNA-Binding Proteins by Mass Spectrometry (ChIRP-MS) technique, initially developed for mammalian cells, has been adapted in this study for application in Arabidopsis thaliana. The procedures have been meticulously modified and optimized for telomerase RNA, a notable example of a low-abundance RNA recently identified. Following these optimization steps, ChIRP-MS can serve as an effective screening method for identifying candidate proteins interacting with any target RNA of interest.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa