Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 532(7600): 465-470, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-26863193

RESUMO

The biological carbon pump is the process by which CO2 is transformed to organic carbon via photosynthesis, exported through sinking particles, and finally sequestered in the deep ocean. While the intensity of the pump correlates with plankton community composition, the underlying ecosystem structure driving the process remains largely uncharacterized. Here we use environmental and metagenomic data gathered during the Tara Oceans expedition to improve our understanding of carbon export in the oligotrophic ocean. We show that specific plankton communities, from the surface and deep chlorophyll maximum, correlate with carbon export at 150 m and highlight unexpected taxa such as Radiolaria and alveolate parasites, as well as Synechococcus and their phages, as lineages most strongly associated with carbon export in the subtropical, nutrient-depleted, oligotrophic ocean. Additionally, we show that the relative abundance of a few bacterial and viral genes can predict a significant fraction of the variability in carbon export in these regions.


Assuntos
Organismos Aquáticos/metabolismo , Carbono/metabolismo , Ecossistema , Plâncton/metabolismo , Água do Mar/química , Organismos Aquáticos/genética , Organismos Aquáticos/isolamento & purificação , Clorofila/metabolismo , Dinoflagellida/genética , Dinoflagellida/isolamento & purificação , Dinoflagellida/metabolismo , Expedições , Genes Bacterianos , Genes Virais , Geografia , Oceanos e Mares , Fotossíntese , Plâncton/genética , Plâncton/isolamento & purificação , Água do Mar/microbiologia , Água do Mar/parasitologia , Synechococcus/genética , Synechococcus/isolamento & purificação , Synechococcus/metabolismo , Synechococcus/virologia
2.
PLoS Biol ; 9(10): e1001177, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22028628

RESUMO

The structure, robustness, and dynamics of ocean plankton ecosystems remain poorly understood due to sampling, analysis, and computational limitations. The Tara Oceans consortium organizes expeditions to help fill this gap at the global level.


Assuntos
Ecossistema , Expedições , Biologia Marinha , Plâncton/crescimento & desenvolvimento , Animais , Oceanos e Mares
3.
Proc Natl Acad Sci U S A ; 105(51): 20344-9, 2008 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-19075222

RESUMO

Carbon uptake by marine phytoplankton, and its export as organic matter to the ocean interior (i.e., the "biological pump"), lowers the partial pressure of carbon dioxide (pCO(2)) in the upper ocean and facilitates the diffusive drawdown of atmospheric CO(2). Conversely, precipitation of calcium carbonate by marine planktonic calcifiers such as coccolithophorids increases pCO(2) and promotes its outgassing (i.e., the "alkalinity pump"). Over the past approximately 100 million years, these two carbon fluxes have been modulated by the relative abundance of diatoms and coccolithophores, resulting in biological feedback on atmospheric CO(2) and Earth's climate; yet, the processes determining the relative distribution of these two phytoplankton taxa remain poorly understood. We analyzed phytoplankton community composition in the Atlantic Ocean and show that the distribution of diatoms and coccolithophorids is correlated with the nutricline depth, a proxy of nutrient supply to the upper mixed layer of the ocean. Using this analysis in conjunction with a coupled atmosphere-ocean intermediate complexity model, we predict a dramatic reduction in the nutrient supply to the euphotic layer in the coming century as a result of increased thermal stratification. Our findings indicate that, by altering phytoplankton community composition, this causal relationship may lead to a decreased efficiency of the biological pump in sequestering atmospheric CO(2), implying a positive feedback in the climate system. These results provide a mechanistic basis for understanding the connection between upper ocean dynamics, the calcium carbonate-to-organic C production ratio and atmospheric pCO(2) variations on time scales ranging from seasonal cycles to geological transitions.


Assuntos
Carbono/química , Carbono/metabolismo , Previsões , Efeito Estufa , Biologia Marinha , Atmosfera/química , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Ecossistema , Alimentos , Oceanos e Mares , Pressão Parcial , Estações do Ano
4.
Nat Commun ; 12(1): 4935, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34400636

RESUMO

The study of connectivity patterns in networks has brought novel insights across diverse fields ranging from neurosciences to epidemic spreading or climate. In this context, betweenness centrality has demonstrated to be a very effective measure to identify nodes that act as focus of congestion, or bottlenecks, in the network. However, there is not a way to define betweenness outside the network framework. By analytically linking dynamical systems and network theory, we provide a trajectory-based formulation of betweenness, called Lagrangian betweenness, as a function of Lyapunov exponents. This extends the concept of betweenness beyond the context of network theory relating hyperbolic points and heteroclinic connections in any dynamical system to the structural bottlenecks of the network associated with it. Using modeled and observational velocity fields, we show that such bottlenecks are present and surprisingly persistent in the oceanic circulation across different spatio-temporal scales and we illustrate the role of these areas in driving fluid transport over vast oceanic regions. Analyzing plankton abundance data from the Kuroshio region of the Pacific Ocean, we find significant spatial correlations between measures of diversity and betweenness, suggesting promise for ecological applications.

5.
PLoS One ; 11(5): e0155977, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27228080

RESUMO

The elemental stoichiometry of microalgae reflects their underlying macromolecular composition and influences competitive interactions among species and their role in the food web and biogeochemistry. Here we provide a new estimate of the macromolecular composition of microalgae using a hierarchical Bayesian analysis of data compiled from the literature. The median macromolecular composition of nutrient-sufficient exponentially growing microalgae is 32.2% protein, 17.3% lipid, 15.0% carbohydrate, 17.3% ash, 5.7% RNA, 1.1% chlorophyll-a and 1.0% DNA as percent dry weight. Our analysis identifies significant phylogenetic differences in macromolecular composition undetected by previous studies due to small sample sizes and the large inherent variability in macromolecular pools. The phylogenetic differences in macromolecular composition lead to variations in carbon-to-nitrogen ratios that are consistent with independent observations. These phylogenetic differences in macromolecular and elemental composition reflect adaptations in cellular architecture and biochemistry; specifically in the cell wall, the light harvesting apparatus, and storage pools.


Assuntos
Biodiversidade , Substâncias Macromoleculares/química , Microalgas/classificação , Microalgas/metabolismo , Filogenia , Fenômenos Fisiológicos Vegetais , Teorema de Bayes , Microalgas/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa