Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Opt Lett ; 49(2): 330-333, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38194561

RESUMO

A quantum-dot microdisk was optically pumped by continuous-wave excitation with a level sufficient for the ground-state lasing. The microdisk was additionally illuminated with sub-ps pulses of various powers. It was found that there is a critical level of pulse power that determines the subsequent transient process of the microlaser. Depending on the level of the pulsed excitation, the ground-state lasing intensity can be either enhanced (for weak pulses) or fully quenched (for strong pulses). In the latter case, the excited-state lasing is ignited for a short time. All dynamic phenomena occur on a time scale of the order of 100 ps, and the duration of the transient process as a whole (from the arrival of the excitation pulse to the restoration of steady-state intensities) lasts no more than 0.5 ns. Using this phenomenon, a microlaser can be rapidly switched between two states with the switching controlled by the level of the incoming optical pulse.

2.
Small ; 19(28): e2301660, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37178371

RESUMO

Emerging technologies for integrated optical circuits demand novel approaches and materials. This includes a search for nanoscale waveguides that should satisfy criteria of high optical density, small cross-section, technological feasibility and structural perfection. All these criteria are met with self-assembled gallium phosphide (GaP) epitaxial nanowires. In this work, the effects of the nanowire geometry on their waveguiding properties are studied both experimentally and numerically. Cut-off wavelength dependence on the nanowire diameter is analyzed to demonstrate the pathways for fabrication of low-loss and subwavelength cross-section waveguides for visible and near-infrared (IR) ranges. Probing the waveguides with a supercontinuum laser unveils the filtering properties of the nanowires due to their resonant action. The nanowires exhibit perfect elasticity allowing fabrication of curved waveguides. It is demonstrated that for the nanowire diameters exceeding the cut-off value, the bending does not sufficiently reduce the field confinement promoting applicability of the approach for the development of nanoscale waveguides with a preassigned geometry. Optical X-coupler made of two GaP nanowires allowing for spectral separation of the signal is fabricated. The results of this work open new ways for the utilization of GaP nanowires as elements of advanced photonic logic circuits and nanoscale interferometers.

3.
Opt Lett ; 48(13): 3515-3518, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37390169

RESUMO

The peculiarities of two-state lasing in a racetrack microlaser with an InAs/GaAs quantum dot active region are investigated by measuring the electroluminescence spectra at various injection currents and temperatures. Unlike edge-emitting and microdisk lasers, where two-state lasing involves the ground and first excited-state optical transitions of quantum dots, in racetrack microlasers, we observe lasing through the ground and second excited states. As a result, the spectral separation between lasing bands is doubled to more than 150 nm. A temperature dependence of threshold currents for lasing via ground and second excited states of quantum dots was also obtained.


Assuntos
Pontos Quânticos , Temperatura
4.
Nanomaterials (Basel) ; 13(5)2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36903756

RESUMO

One-state and two-state lasing is investigated experimentally and through numerical simulation as a function of temperature in microdisk lasers with Stranski-Krastanow InAs/InGaAs/GaAs quantum dots. Near room temperature, the temperature-induced increment of the ground-state threshold current density is relatively weak and can be described by a characteristic temperature of about 150 K. At elevated temperatures, a faster (super-exponential) increase in the threshold current density is observed. Meanwhile, the current density corresponding to the onset of two-state lasing was found to decrease with increasing temperature, so that the interval of current density of pure one-state lasing becomes narrower with the temperature increase. Above a certain critical temperature, ground-state lasing completely disappears. This critical temperature drops from 107 to 37 °C as the microdisk diameter decreases from 28 to 20 µm. In microdisks with a diameter of 9 µm, a temperature-induced jump in the lasing wavelength from the first excited-state to second excited-state optical transition is observed. A model describing the system of rate equations and free carrier absorption dependent on the reservoir population provides a satisfactory agreement with experimental results. The temperature and threshold current corresponding to the quenching of ground-state lasing can be well approximated by linear functions of saturated gain and output loss.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa