Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Small ; 13(46)2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29044916

RESUMO

The filtration performance and light transmittance of nanofiber air filters are restricted by their thick fiber diameter, large pore size, and substrate dependence, which can be solved by constructing substrate-free fibrous membranes with true nanoscale diameters and ultrathin thicknesses, however, it has proven to be extremely challenging. Herein, a roust approach is presented to create free-standing polyurethane (PU) nanofiber/nets air filters composed of bonded nanofibers and 2D nanonets for particular matter (PM) capture via combining electrospinning/netting technique and facile peel off process from designed substrates. This strategy causes widely distributed Steiner-tree structured nanonets with diameters of ≈20 nm and bonded scaffold nanofibers to assemble into ultrathin membranes with small pore size, high porosity, and robust mechanical strength on a large scale based on ionic liquid inspiration and surface structure optimization of receiver substrates. As a consequence, the resulting free-standing PU nanofiber/nets filters exhibit high PM1-0.5 removal efficiency of >99.00% and PM2.5-1 removal efficiency of >99.73%, maintaining high light transmittance of ≈70% and low pressure drop of 28 Pa; even achieve >99.97% removal efficiency with ≈40% transmittance for PM0.3 filtration, and robust purification capacity for real smoke PM2.5 , making them promising high-efficiency and transparent filtration materials for various filtration and separation applications.

2.
Nanotechnology ; 28(31): 31LT02, 2017 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-28649979

RESUMO

Graphene oxide (GO) sheets can be readily surface-overlaid on hot-pressed electrospun polyacrylonitrile (PAN) nanofiber membrane to form a continuous and crack-free layer; upon thermal reduction at 150 °C for 12 h, the resulting reduced GO (rGO) layer can reject ∼90% MgSO4 with high water flux (due to the size exclusion mechanism), making the prepared PAN-rGO membranes promising nanofiltration media for water purification. It is important to note that no delamination of GO/rGO sheet layers has been observed throughout this study. We highlight that a simple processing method (i.e., hot pressing) is critical for the successful preparation of 2D materials (e.g., GO/rGO) based membranes/media. It is envisioned that the reported study can benefit many groups working on various membrane applications of 2D materials; in other words, the hot-pressed electrospun nanofiber membranes could be generally utilized as an innovative type of platform to support various 2D sheets for different separation applications such as highly efficient and cost-effective removal of dissolved components (e.g., organic molecules) and even (hydrated) ions from water.

3.
Environ Sci Technol ; 48(17): 10390-7, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25093534

RESUMO

In this study, a mat/membrane consisting of overlaid PVA/PA6-Cu(II) composite nanofibers was prepared via the electrospinning technique followed by coordination/chelation with Cu(II) ions; an enzyme of catalase (CAT) was then immobilized onto the PVA/PA6-Cu(II) nanofibrous membrane. The amount of immobilized catalase reached a high value of 64 ± 4.6 mg/g, while the kinetic parameters (Vmax and Km) of enzyme were 3774 µmol/mg·min and 41.13 mM, respectively. Furthermore, the thermal stability and storage stability of immobilized catalase were improved significantly. Thereafter, a plug-flow type of immobilized enzyme membrane reactor (IEMR) was assembled from the PVA/PA6-Cu(II)-CAT membrane. With the increase of operational pressure from 0.02 to 0.2 MPa, the flux value of IEMR increased from 0.20 ± 0.02 to 0.76 ± 0.04 L/m(2)·min, whereas the conversion ratio of H2O2 decreased slightly from 92 ± 2.5% to 87 ± 2.1%. After 5 repeating cycles, the production capacity of IEMR was merely decreased from 0.144 ± 0.006 to 0.102 ± 0.004 mol/m(2)·min. These results indicated that the assembled IEMR possessed high productivity and excellent reusability, suggesting that the IEMR based on electrospun PVA/PA6-Cu(II) nanofibrous membrane might have great potential for various applications, particularly those related to environmental protection.


Assuntos
Reatores Biológicos , Caprolactama/análogos & derivados , Catalase/metabolismo , Cobre/química , Nanofibras/química , Nanotecnologia/métodos , Polímeros/química , Álcool de Polivinil/química , Animais , Caprolactama/química , Catalase/ultraestrutura , Bovinos , Estabilidade Enzimática , Enzimas Imobilizadas/metabolismo , Enzimas Imobilizadas/ultraestrutura , Peróxido de Hidrogênio/química , Cinética , Membranas Artificiais , Nanofibras/ultraestrutura , Porosidade , Reciclagem , Temperatura
4.
Adv Mater ; 36(14): e2307690, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38145556

RESUMO

Ti-series oxide ceramics in the form of aerogels, such as TiO2, SrTiO3, BaTiO3, and CaCu3Ti4O12, hold tremendous potential as functional materials owing to their excellent optical, dielectric, and catalytic properties. Unfortunately, these inorganic aerogels are usually brittle and prone to pulverization owing to weak inter-particulate interactions, resulting in restricted application performance and serious health risks. Herein, a novel strategy is reported to synthesize an elastic form of an aerogel-like, highly porous structure, in which activity-switchable Ti-series oxide sols transform from the metastable state to the active state during electrospinning, resulting in condensation and solidification at the whipping stage to obtain curled nanofibers. These curled nanofibers are further entangled when flying in the air to form a physically interlocked, elastic network mimicking the microstructure of high-elasticity hydrogels. This strategy provides a library of Ti-series oxide nanofiber sponges with unprecedented stretchability, compressibility, and bendability, possessing extensive opportunities for greener, safer, and broader applications as integrated or wearable functional devices. As a proof-of-concept demonstration, a new, elastic form of TiO2, composed of both "white" and "black" TiO2 nanofiber sponges, is constructed as spontaneous air-conditioning textiles in smart clothing, buildings, and vehicles, with unique bidirectional regulation of radiative cooling in summer and solar heating in winter.

5.
Langmuir ; 28(40): 14433-40, 2012 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-22974488

RESUMO

The development of novel nanomaterials with well-controlled morphologies/structures to achieve excellent activities/sensitivities in surface-enhanced Raman scattering (SERS) is crucial in advancing the high-performance SERS detections of chemical and biological species. In this study, amidoxime surface-functionalized polyacrylonitrile (ASFPAN) nanofibrous membranes surface-decorated with silver nanoparticles (Ag NPs) were prepared via the technique of electrospinning followed by the method of seed-mediated electroless plating. High SERS activities/sensitivities were observed from the ASFPAN-Ag NPs nanofibrous membranes, while the density and size of Ag NPs had an important impact on the SERS activity/sensitivity. The results confirmed that the enhancement of Raman signals is due to the presence of hot spots between/among Ag NPs on the nanofiber surfaces. Electrospun nanofibrous membranes surface-decorated with Ag NPs were mechanical flexible/resilient and could be used as highly active/sensitive SERS substrates for a broad range of applications.


Assuntos
Fenômenos Mecânicos , Membranas Artificiais , Nanopartículas Metálicas/química , Nanofibras/química , Nanotecnologia/métodos , Prata/química , Análise Espectral Raman/métodos , Propriedades de Superfície
6.
ACS Appl Bio Mater ; 4(4): 3639-3648, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33969280

RESUMO

Complex shaped and critical-sized bone defects have been a clinical challenge for many years. Scaffold-based strategies such as hydrogels provide localized drug release while filling complex defect shapes, but ultimately possess weaknesses in low mechanical strength alongside a lack of macroporous and collagen-mimicking nanofibrous structures. Thus, there is a demand for mechanically strong, extracellular matrix (ECM) mimicking scaffolds that can robustly fit complex shaped critical sized defects and simultaneously provide localized, sustained, multiple growth factor release. We therefore developed a composite, bi-phasic PCL/hydroxyapatite (HA) 3D nanofibrous (NF) scaffold for bone tissue regeneration by using our innovative electrospun-based thermally induced self-agglomeration (TISA) technique. One intriguing feature of our ECM-mimicking TISA scaffolds is that they are highly elastic and porous even after evenly coated with minerals and can easily be pressed to fit different defect shapes. Furthermore, the bio-mimetic mineral deposition technique allowed us to simultaneously encapsulate different type of drugs, e.g., proteins and small molecules, on TISA scaffolds under physiologically mild conditions. Compared to scaffolds with physically surface-adsorbed phenamil, a BMP2 signaling agonist, incorporated phenamil composite scaffolds indicated less burst release and longer lasting sustained release of phenamil with subsequently improved osteogenic differentiation of cells in vitro. Overall, our study indicated that the innovative press-fit 3D NF composite scaffold may be a robust tool for multiple-drug delivery and bone tissue engineering.


Assuntos
Amilorida/análogos & derivados , Nanofibras/química , Poliésteres/química , Amilorida/química , Amilorida/metabolismo , Amilorida/farmacologia , Animais , Regeneração Óssea/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Durapatita/química , Módulo de Elasticidade , Matriz Extracelular/metabolismo , Camundongos , Minerais/química , Osteoclastos/citologia , Osteoclastos/metabolismo , Osteogênese/efeitos dos fármacos , Porosidade , Impressão Tridimensional , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , Propriedades de Superfície , Engenharia Tecidual
7.
Polymers (Basel) ; 13(5)2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33668134

RESUMO

Biochar is a byproduct generated from the hydrothermal liquefaction of biomass, such as corn stover, in an anaerobic environment. This work aims to convert biochar into a value-added product of carbon nanofibrous felt. First, the biochar-containing precursor membrane was prepared from simultaneous electrospinning and electrospraying. After thermal stabilization in air and carbonization in argon, the obtained precursor membrane was converted into a mechanically flexible and robust carbon nanofibrous felt. Electrochemical results revealed that the biochar-derived carbon nanofibrous felt might be a good candidate as a supercapacitor electrode with a good rate capability and high kinetic performance.

8.
Small ; 5(5): 536-42, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19197971

RESUMO

Continuous nanoscale carbon fibers can be developed by stabilization and carbonization of highly aligned and extensively stretched electrospun polyacrylonitrile copolymer nanofiber precursor under optimal tension. These carbon fibers, with diameters of tens of nanometers, are expected to possess a superior mechanical strength that is unlikely to be achieved through conventional approaches. This is because i) the innovative precursor, with a fiber diameter approximately 100 times smaller than that of conventional counterparts, possesses an extremely high degree of macromolecular orientation and a significantly reduced amount of structural imperfections, and ii) the ultrasmall fiber diameter also effectively prevents the formation of structural inhomogeneity, particularly sheath/core structures during stabilization and carbonization.


Assuntos
Cristalização/métodos , Eletroquímica/métodos , Nanotecnologia/métodos , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Módulo de Elasticidade , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Estresse Mecânico , Propriedades de Superfície , Resistência à Tração
9.
Chem Commun (Camb) ; (18): 2568-70, 2009 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-19532892

RESUMO

The current of uni-axially aligned electrospun ZnO nanofibers is modulated reversibly under UV irradiation, with the sensitivity of the UV nanosensors depending on the surface coating of the nanofibers, due to the effect on the photo-generated current.

10.
ACS Appl Mater Interfaces ; 11(7): 6685-6704, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30689335

RESUMO

High-performance flexible strain and pressure sensors are important components of the systems for human motion detection, human-machine interaction, soft robotics, electronic skin, etc., which are envisioned as the key technologies for applications in future human healthcare monitoring and artificial intelligence. In recent years, highly flexible and wearable strain/pressure sensors have been developed based on various materials/structures and transduction mechanisms. Piezoresistive three-dimensional (3D) monolithic conductive sponge, the resistance of which changes upon external pressure or stimuli, has emerged as a forefront material for flexible and wearable pressure sensor due to its excellent sensor performance, facile fabrication, and simple circuit integration. This review focuses on the rapid development of the piezoresistive pressure sensors based on 3D conductive sponges. Various piezoresistive conductive sponges are categorized into four different types and their material and structural characteristics are summarized. Methods for preparation of the 3D conductive sponges are reviewed, followed by examples of device performance and selected applications. The review concludes with a critical reflection of the current status and challenges. Prospects of the 3D conductive sponge for flexible and wearable pressure sensor are discussed.


Assuntos
Condutividade Elétrica , Pressão , Dispositivos Eletrônicos Vestíveis , Humanos
11.
Polymer (Guildf) ; 49(24): 5294-5299, 2008 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-19907634

RESUMO

The aim of this study was to investigate the preparation, characterization, and encapsulation/release performance of an electrospun composite nanofiber mat. The hypothesis was that the composite nanofiber mat with nano-scaled drug particles impregnated in biocompatible and biodegradable polymer nanofibers can serve as an innovative type of tissue engineering scaffold with desired and controllable drug encapsulation/release properties. To test the hypothesis, the composite nanofiber mat electrospun from an emulsion consisting of poly (lactic-co-glycolic acid) (PLGA) Rhodamine B (a model compound to simulate drugs), sorbitan monooleate (Span-80, a non-ionic emulsifier/surfactant that is presumably non-toxic/safe for cell-growth), chloroform, DMF, and distilled water was prepared and characterized; and the Rhodamine B encapsulation/release profile in phosphate buffered saline (pH = 7.4) was recorded and analyzed. For comparison purposes, two additional nanofiber mats electrospun from (1) a solution containing PLGA and Rhodamine B, and (2) a solution containing PLGA, Rhodamine B, and Span-80 were also prepared and assessed as the control samples. The results indicated that the composite nanofiber mat electrospun from the emulsion had the most desired and controllable Rhodamine B encapsulation/release profile and the excellent morphological sustainability; thus, it could be utilized as both a drug encapsulation/release vehicle and a tissue engineering scaffold.

12.
J Nanosci Nanotechnol ; 8(3): 1528-36, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18468186

RESUMO

The objective of this study was to prepare and characterize electrospun SiO2 nanofibers for composite (particularly dental composite) applications. We investigated (1) tetraethyl orthosilicate (TEOS) as the alkoxide precursor, (2) polyethylene oxide (PEO) and polyvinyl pyrrolidone (PVP) as the carrying polymers, (3) several solvents for making the spin dopes, and (4) the morphological and structural properties of the electrospun SiO2 nanofibers and their relationship with the pyrolysis temperatures. We also investigated the morphology durability of the prepared SiO2 nanofibers by subjecting them to vigorous ultrasonic vibrations. The results indicated that the uniform (beads-free) amorphous SiO2 nanofibers with an average diameter of approximately 500 nm were successfully prepared. These SiO2 nanofibers also retained their overall fiber morphology when subjected to vigorous ultrasonic vibrations. The electrospun SiO2 nanofibers were, therefore, nano-scaled glass (amorphous SiO2) fibers, and could be used for reinforcement of dental composites.

13.
Dent Mater ; 24(2): 235-43, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17572485

RESUMO

OBJECTIVE: To investigate the reinforcement of Bis-GMA/TEGDMA dental resins (without conventional glass filler) and composites (with conventional glass filler) with various mass fractions of nano fibrillar silicate (FS). METHODS: Three dispersion methods were studied to separate the silanized FS as nano-scaled single crystals and uniformly distribute them into dental matrices. The photo-curing behaviors of the Bis-GMA/TEGDMA/FS resins were monitored in situ by RT-NIR to study the photopolymerization rate and the vinyl double bond conversion. Mechanical properties (flexural strength, elastic modulus and work-of-fracture) of the nano FS reinforced resins/composites were tested, and analysis of variance (ANOVA) was used for the statistical analysis of the acquired data. The morphology of nano FS and the representative fracture surfaces of its reinforced resins/composites were examined by SEM/TEM. RESULTS: Impregnation of small mass fractions (1% and 2.5%) of nano FS into Bis-GMA/TEGDMA (50/50 mass ratio) dental resins/composites improved the mechanical properties substantially. Larger mass fraction of impregnation (7.5%), however, did not further improve the mechanical properties (one way ANOVA, P>0.05) and may even reduce the mechanical properties. The high degree of separation and uniform distribution of nano FS into dental resins/composites was a challenge. Impregnation of nano FS into dental resins/composites could result in two opposite effects: a reinforcing effect due to the highly separated and uniformly distributed nano FS single crystals, or a weakening effect due to the formation of FS agglomerates/particles. SIGNIFICANCE: Uniform distribution of highly separated nano FS single crystals into dental resins/composites could significantly improve the mechanical properties of the resins/composites.


Assuntos
Bis-Fenol A-Glicidil Metacrilato/química , Resinas Compostas/química , Materiais Dentários/química , Nanopartículas/química , Polietilenoglicóis/química , Ácidos Polimetacrílicos/química , Silicatos/química , Ácido 4-Aminobenzoico/química , Bis-Fenol A-Glicidil Metacrilato/efeitos da radiação , Resinas Compostas/efeitos da radiação , Materiais Dentários/efeitos da radiação , Elasticidade , Etanol/química , Vidro/química , Humanos , Luz , Teste de Materiais , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Nanocompostos/química , Nanopartículas/efeitos da radiação , Maleabilidade , Polietilenoglicóis/efeitos da radiação , Ácidos Polimetacrílicos/efeitos da radiação , Silanos/química , Silicatos/efeitos da radiação , Solventes/química , Espectroscopia de Luz Próxima ao Infravermelho , Estresse Mecânico , para-Aminobenzoatos
14.
J Hazard Mater ; 344: 819-828, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29172168

RESUMO

In this study, an innovative nano-material was prepared, which was ultilized to removal of heavy metal ions from wastewater. Polyacrylonitrile/cellulose acetate (PAN/CA) composite nanofibrous membranes were generated by the electronspinning technique first, and then amidoxime ployarcylonitrile/regenerate cellulose (AOPAN/RC) composite nanofibrous membranes were prepared by combining hydrolysis and amidoximation modification. The modification of composite nanofibers (AOPAN/RC) were consequently used in heavy metal ions adsorption. The characterizations of various different nanofibers were analyzed using scanning electron microscopy, Fourier transform infrared spectroscopy, surface area and pore size distribution analyzer and energy dispersive X-ray spectroscopy. Meantime, the adsorption equilibrium studies were studied. In addition, the saturation adsorption amount of nanofibrous membranes (at 25°C) for Fe(III), Cu(II) and Cd(II) of 7.47, 4.26 and 1.13mmolg-1, respectively. The effects of pH value of solution, adsorption time and ions concentration on adsorption capacity were also investigated. Furthermore, the composite nanofibrous membranes after five times consecutive adsorption and desorption tests, the desorption rate of the Fe(III), Cu(II) and Cd(II) mental ions maintained more than 80% of their first desorption rate, AOPAN/RC composite nanofibrous reflected excellent resuability.

15.
Carbohydr Polym ; 179: 164-172, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29111039

RESUMO

Three-dimensional, cost-effective, and renewable/recyclable absorbent materials with high capacities on absorption of organic compounds are urgently in demand. Herein, a facile while innovative approach is reported to develop ultralight electrospun cellulose sponge (UECS). The prepared UECS exhibits super-high absorption capacity (up to 232 times of its own weight) towards absorption of organic compounds due to high porosity (99.57%), low density (6.45mg/cm3), and hydrophobic surface feature (with water contact angle of 141.2°). Furthermore, the UECS is mechanically robust thus can be readily cut into different shapes; and it also possesses excellent stability against various organic compounds. Intriguingly, upon absorption of an organic compound, the shape-stable UECS organic gel can be formed. Hence, the developed UECS would be promising as environmental friendly absorbent on high-performance separation of organic compounds from aqueous systems; while the UECS organic gel could be utilized for the applications such as drug delivery and sensor.

16.
Colloids Surf B Biointerfaces ; 171: 31-39, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30005288

RESUMO

Three-dimensional (3D) scaffolds as artificial ECMs have been extensively studied to mimic the critical features of natural ECMs. To develop more clinically relevant 3D scaffolds, electrospun nanofibrous scaffolds with different weight ratios of PCL/PLA (i.e., 100/0, 60/40, and 20/80) were fabricated via the thermally induced (nanofiber) self-agglomeration (TISA) method. The hypothesis was that, with the weight ratio increase of stiffer and more bioactive PLA in the 3D PCL/PLA blend scaffolds, the osteogenic differentiation of human mesenchymal stem cells (hMSCs) would be enhanced. The results indicated that, all of the 3D scaffolds were elastic/resilient and possessed interconnected and hierarchical pores with sizes from sub-microns to ∼300 µm; therefore, the morphological structures of these scaffolds were similar to those of natural ECMs. The PLA80 scaffolds exhibited the best overall properties in terms of density, porosity, water absorption capacity, mechanical properties, bioactivity, and cell viability. Furthermore, with increasing the PLA weight ratio, the alkaline phosphatase (ALP) activity, calcium content, and gene expression level were also increased, probably due to the improved stiffness/bioactivity of scaffold. Hence, the novel 3D electrospun PLA80 nanofibrous scaffold might be desired/favorable for the osteogenic differentiation of hMSCs.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Nanofibras/química , Osteogênese/efeitos dos fármacos , Poliésteres/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Humanos , Tamanho da Partícula , Poliésteres/química , Propriedades de Superfície
17.
Appl Mater Today ; 10: 194-202, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29577064

RESUMO

Bone morphogenic protein 2 (BMP2) is a key growth factor for bone regeneration, possessing FDA approval for orthopedic applications. BMP2 is often required in supratherapeutic doses clinically, yielding adverse side effects and substantial treatment costs. Considering the crucial role of materials for BMPs delivery and cell osteogenic differentiation, we devote to engineering an innovative bone-matrix mimicking niche to improve low dose of BMP2-induced bone formation. Our previous work describes a novel technique, named thermally induced nanofiber self-agglomeration (TISA), for generating 3D electrospun nanofibrous (NF) polycaprolactone (PCL) scaffolds. TISA process could readily blend PCL with PLA, leading to increased osteogenic capabilities in vitro, however, these bio-inert synthetic polymers produced limited BMP2-induced bone formation in vivo. We therefore hypothesize that functionalization of NF 3D PCL scaffolds with bone-like hydroxyapatite (HA) and BMP2 signaling activator phenamil will provide a favorable osteogenic niche for bone formation at low doses of BMP2. Compared to PCL-3D scaffolds, PCL/HA-3D scaffolds demonstrated synergistically enhanced osteogenic differentiation capabilities of C2C12 cells with phenamil. Importantly, in vivo studies showed this synergism was able to generate significantly increased new bone in an ectopic mouse model, suggesting PCL/HA-3D scaffolds act as a favorable synthetic extracellular matrix for bone regeneration.

18.
Polymer (Guildf) ; 48(9): 2720-2728, 2007 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-17940586

RESUMO

The objective of this research was to study the reinforcement of electrospun nylon 6/fibrillar silicate nanocomposite nanofibers on Bis-GMA/TEGDMA dental composites. The hypothesis was that the uniform distribution of nano-scaled and highly aligned fibrillar silicate single crystals into electrospun nylon 6 nanofibers would improve the mechanical properties of the resulting nanocomposite nanofibers, and would lead to the effective reinforcement of dental composites. The nylon 6/fibrillar silicate nanocomposite nanofibers were crystalline, structurally oriented and had an average diameter of approximately 250 nm. To relatively well distribute nanofibers in dental composites, the nanofiber containing composite powders with a particle structure similar to that in interpenetration networks were prepared first, and then used to make the dental composites. The results indicated that small mass fractions (1 % and 2 %) of nanofiber impregnation improved the mechanical properties substantially, while larger mass factions (4 % and 8 %) of nanofiber impregnation resulted in less desired mechanical properties.

19.
ACS Appl Mater Interfaces ; 9(35): 30014-30023, 2017 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-28806516

RESUMO

Flexible and stretchable conductive textiles are highly desired for potential applications in wearable electronics. This study demonstrates a scalable and facile preparation of all-organic nonwoven that is mechanically stretchable and electrically conductive. Polyurethane (PU) fibrous nonwoven is prepared via the electrospinning technique; in the following step, the electrospun PU nonwoven is dip-coated with the conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). This simple method enables convenient preparation of PEDOT:PSS@PU nonwovens with initial sheet resistance in the range of 35-240 Ω/sq (i.e., the electrical conductivity in the range of 30-200 S m-1) by varying the number of dip-coating times. The resistance change of the PEDOT:PSS@PU nonwoven under stretch is investigated. The PEDOT:PSS@PU nonwoven is first stretched and then released repeatedly under certain strain (denoted as prestretching strain); the resistance of PEDOT:PSS@PU nonwoven becomes constant after the irreversible change for the first 10 stretch-release cycles. Thereafter, the resistance of the nonwoven does not vary appreciably under stretch as long as the strain is within the prestretching strain. Therefore, the PEDOT:PSS@PU nonwoven can be used as a stretchable conductor within the prestretching strain. Circuits using sheet and twisted yarn of the nonwovens as electric conductors are demonstrated.

20.
ACS Appl Mater Interfaces ; 9(46): 41055-41065, 2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29111637

RESUMO

Fabrication of membrane adsorbers with elevated binding capacity and high throughput is highly desired for simplifying and improving purification efficiencies of bioproducts (biotherapeutics, vaccines, etc.) in the biotechnological and biopharmaceutical industries. Here we demonstrate the preparation of a novel class of self-supported, cellulose-graft-polypropionic acid (CL-g-PPA) cation-exchange nanofiber membrane adsorbers under mild reaction conditions for the purification of positively charged therapeutic proteins. In our fabrication method, acrylonitrile was first polymerized and surface grafted onto cellulose nanofibers using cerium ammonium nitrate as a redox initiator to form cellulose-g-polyacrylonitrile (CL-g-PAN). CL-g-PAN was then submitted to a hydrolyzation reaction to form CL-g-PPA cationic membrane adsorbers. Morphology and structural characterization illustrated the formation of CL-g-PPA membranes with uniform coating of polyacid nanolayers along the individual nanofibers without disturbing the nanofiber structure. Benefiting from these numerous cationic polyacid binding sites and inherent large surface area and open porous structure, CL-g-PPA nanofiber membrane adsorbers showed a lysozyme static adsorption capacity of 1664 mg/g of nanofibers. These membranes showed a lysozyme dynamic binding capacity of 508 mg/g of nanofibers at 10% breakthrough (equivalent to 206 g/L capacity), with a residence time of less than 6 s. Moreover, CL-g-PPA self-supported nanofibers displayed excellent structural stability and reversibility after several cycles of protein binding studies. This dynamic binding capacity of the CL-g-PPA nanofiber membranes was 3.2 times higher than that of macroporous cellulose membranes and 8.5 times higher than that of the Sartobind S commercial membrane adsorber. Considering the simple fabrication method employed, excellent protein adsorption capacity, remarkable structural stability, and reusability, CL-g-PPA nanofiber membranes provided a versatile platform for the chromatographic separations of biomolecules (e.g., proteins, nucleic acids, and viral vaccines) as well as water purification and similar ion-exchange applications.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa