Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Evol ; 38(9): 3681-3696, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-33973014

RESUMO

Despite the importance of gene regulatory enhancers in human biology and evolution, we lack a comprehensive model of enhancer evolution and function. This substantially limits our understanding of the genetic basis of species divergence and our ability to interpret the effects of noncoding variants on human traits. To explore enhancer sequence evolution and its relationship to regulatory function, we traced the evolutionary origins of transcribed human enhancer sequences with activity across diverse tissues and cellular contexts from the FANTOM5 consortium. The transcribed enhancers are enriched for sequences of a single evolutionary age ("simple" evolutionary architectures) compared with enhancers that are composites of sequences of multiple evolutionary ages ("complex" evolutionary architectures), likely indicating constraint against genomic rearrangements. Complex enhancers are older, more pleiotropic, and more active across species than simple enhancers. Genetic variants within complex enhancers are also less likely to associate with human traits and biochemical activity. Transposable-element-derived sequences (TEDS) have made diverse contributions to enhancers of both architectures; the majority of TEDS are found in enhancers with simple architectures, while a minority have remodeled older sequences to create complex architectures. Finally, we compare the evolutionary architectures of transcribed enhancers with histone-mark-defined enhancers. Our results reveal that most human transcribed enhancers are ancient sequences of a single age, and thus the evolution of most human enhancers was not driven by increases in evolutionary complexity over time. Our analyses further suggest that considering enhancer evolutionary histories provides context that can aid interpretation of the effects of variants on enhancer function. Based on these results, we propose a framework for analyzing enhancer evolutionary architecture.


Assuntos
Elementos Facilitadores Genéticos , Genômica , Elementos de DNA Transponíveis , Regulação da Expressão Gênica , Humanos , Fenótipo
2.
Cell Genom ; 4(4): 100536, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38604126

RESUMO

Gene regulatory divergence between species can result from cis-acting local changes to regulatory element DNA sequences or global trans-acting changes to the regulatory environment. Understanding how these mechanisms drive regulatory evolution has been limited by challenges in identifying trans-acting changes. We present a comprehensive approach to directly identify cis- and trans-divergent regulatory elements between human and rhesus macaque lymphoblastoid cells using assay for transposase-accessible chromatin coupled to self-transcribing active regulatory region (ATAC-STARR) sequencing. In addition to thousands of cis changes, we discover an unexpected number (∼10,000) of trans changes and show that cis and trans elements exhibit distinct patterns of sequence divergence and function. We further identify differentially expressed transcription factors that underlie ∼37% of trans differences and trace how cis changes can produce cascades of trans changes. Overall, we find that most divergent elements (67%) experienced changes in both cis and trans, revealing a substantial role for trans divergence-alone and together with cis changes-in regulatory differences between species.


Assuntos
Regulação da Expressão Gênica , Sequências Reguladoras de Ácido Nucleico , Animais , Humanos , Macaca mulatta/genética , Sequências Reguladoras de Ácido Nucleico/genética , Regulação da Expressão Gênica/genética , Fatores de Transcrição/genética , Cromatina/genética
3.
Nat Commun ; 15(1): 12, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195585

RESUMO

Frugivory evolved multiple times in mammals, including bats. However, the cellular and molecular components driving it remain largely unknown. Here, we use integrative single-cell sequencing (scRNA-seq and scATAC-seq) on insectivorous (Eptesicus fuscus; big brown bat) and frugivorous (Artibeus jamaicensis; Jamaican fruit bat) bat kidneys and pancreases and identify key cell population, gene expression and regulatory differences associated with the Jamaican fruit bat that also relate to human disease, particularly diabetes. We find a decrease in loop of Henle and an increase in collecting duct cells, and differentially active genes and regulatory elements involved in fluid and electrolyte balance in the Jamaican fruit bat kidney. The Jamaican fruit bat pancreas shows an increase in endocrine and a decrease in exocrine cells, and differences in genes and regulatory elements involved in insulin regulation. We also find that these frugivorous bats share several molecular characteristics with human diabetes. Combined, our work provides insights from a frugivorous mammal that could be leveraged for therapeutic purposes.


Assuntos
Quirópteros , Diabetes Mellitus , Humanos , Animais , Pâncreas , Rim , Células Epiteliais
4.
Genome Biol Evol ; 14(11)2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36314566

RESUMO

Thousands of human gene regulatory enhancers are composed of sequences with multiple evolutionary origins. These evolutionarily "complex" enhancers consist of older "core" sequences and younger "derived" sequences. However, the functional relationship between the sequences of different evolutionary origins within complex enhancers is poorly understood. We evaluated the function, selective pressures, and sequence variation across core and derived components of human complex enhancers. We find that both components are older than expected from the genomic background, and complex enhancers are enriched for core and derived sequences of similar evolutionary ages. Both components show strong evidence of biochemical activity in massively parallel report assays. However, core and derived sequences have distinct transcription factor (TF)-binding preferences that are largely similar across evolutionary origins. As expected, given these signatures of function, both core and derived sequences have substantial evidence of purifying selection. Nonetheless, derived sequences exhibit weaker purifying selection than adjacent cores. Derived sequences also tolerate more common genetic variation and are enriched compared with cores for expression quantitative trait loci associated with gene expression variability in human populations. In conclusion, both core and derived sequences have strong evidence of gene regulatory function, but derived sequences have distinct constraint profiles, TF-binding preferences, and tolerance to variation compared with cores. We propose that the step-wise integration of younger derived with older core sequences has generated regulatory substrates with robust activity and the potential for functional variation. Our analyses demonstrate that synthesizing study of enhancer evolution and function can aid interpretation of regulatory sequence activity and functional variation across human populations.


Assuntos
Elementos Facilitadores Genéticos , Genômica , Humanos , Evolução Molecular
5.
Nat Commun ; 11(1): 3731, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32709900

RESUMO

Currently, there is no comprehensive framework to evaluate the evolutionary forces acting on genomic regions associated with human complex traits and contextualize the relationship between evolution and molecular function. Here, we develop an approach to test for signatures of diverse evolutionary forces on trait-associated genomic regions. We apply our method to regions associated with spontaneous preterm birth (sPTB), a complex disorder of global health concern. We find that sPTB-associated regions harbor diverse evolutionary signatures including conservation, excess population differentiation, accelerated evolution, and balanced polymorphism. Furthermore, we integrate evolutionary context with molecular evidence to hypothesize how these regions contribute to sPTB risk. Finally, we observe enrichment in signatures of diverse evolutionary forces in sPTB-associated regions compared to genomic background. By quantifying multiple evolutionary forces acting on sPTB-associated regions, our approach improves understanding of both functional roles and the mosaic of evolutionary forces acting on loci. Our work provides a blueprint for investigating evolutionary pressures on complex traits.


Assuntos
Evolução Molecular , Genoma , Nascimento Prematuro/genética , Alelos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Herança Multifatorial , Fenótipo , Gravidez
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa