Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Circ Res ; 110(7): 978-89, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22328533

RESUMO

RATIONALE: The intracellular trafficking of connexin 43 (Cx43) hemichannels presents opportunities to regulate cardiomyocyte gap junction coupling. Although it is known that Cx43 hemichannels are transported along microtubules to the plasma membrane, the role of actin in Cx43 forward trafficking is unknown. OBJECTIVE: We explored whether the actin cytoskeleton is involved in Cx43 forward trafficking. METHODS AND RESULTS: High-resolution imaging reveals that Cx43 vesicles colocalize with nonsarcomeric actin in adult cardiomyocytes. Live-cell fluorescence imaging reveals Cx43 vesicles as stationary or traveling slowly (average speed 0.09 µm/s) when associated with actin. At any time, the majority (81.7%) of vesicles travel at subkinesin rates, suggesting that actin is important for Cx43 transport. Using Cx43 containing a hemagglutinin tag in the second extracellular loop, we developed an assay to detect transport of de novo Cx43 hemichannels to the plasma membrane after release from Brefeldin A-induced endoplasmic reticulum/Golgi vesicular transport block. Latrunculin A (for specific interference of actin) was used as an intervention after reinitiation of vesicular transport. Disruption of actin inhibits delivery of Cx43 to the cell surface. Moreover, using the assay in primary cardiomyocytes, actin inhibition causes an 82% decrease (P<0.01) in de novo endogenous Cx43 delivery to cell-cell borders. In Langendorff-perfused mouse heart preparations, Cx43/ß-actin complexing is disrupted during acute ischemia, and inhibition of actin polymerization is sufficient to reduce levels of Cx43 gap junctions at intercalated discs. CONCLUSIONS: Actin is a necessary component of the cytoskeleton-based forward trafficking apparatus for Cx43. In cardiomyocytes, Cx43 vesicles spend a majority of their time pausing at nonsarcomeric actin rest stops when not undergoing microtubule-based transport to the plasma membrane. Deleterious effects on this interaction between Cx43 and the actin cytoskeleton during acute ischemia contribute to losses in Cx43 localization at intercalated discs.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Membrana Celular/metabolismo , Conexina 43/metabolismo , Vesículas Citoplasmáticas/metabolismo , Queratinócitos/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Transporte Biológico/fisiologia , Linhagem Celular , Membrana Celular/ultraestrutura , Células Cultivadas , Vesículas Citoplasmáticas/ultraestrutura , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Junções Comunicantes/metabolismo , Junções Comunicantes/ultraestrutura , Complexo de Golgi/metabolismo , Complexo de Golgi/ultraestrutura , Humanos , Queratinócitos/citologia , Queratinócitos/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Modelos Animais , Miócitos Cardíacos/citologia , Miócitos Cardíacos/ultraestrutura
2.
PLoS Biol ; 8(2): e1000312, 2010 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-20169111

RESUMO

The BAR domain protein superfamily is involved in membrane invagination and endocytosis, but its role in organizing membrane proteins has not been explored. In particular, the membrane scaffolding protein BIN1 functions to initiate T-tubule genesis in skeletal muscle cells. Constitutive knockdown of BIN1 in mice is perinatal lethal, which is associated with an induced dilated hypertrophic cardiomyopathy. However, the functional role of BIN1 in cardiomyocytes is not known. An important function of cardiac T-tubules is to allow L-type calcium channels (Cav1.2) to be in close proximity to sarcoplasmic reticulum-based ryanodine receptors to initiate the intracellular calcium transient. Efficient excitation-contraction (EC) coupling and normal cardiac contractility depend upon Cav1.2 localization to T-tubules. We hypothesized that BIN1 not only exists at cardiac T-tubules, but it also localizes Cav1.2 to these membrane structures. We report that BIN1 localizes to cardiac T-tubules and clusters there with Cav1.2. Studies involve freshly acquired human and mouse adult cardiomyocytes using complementary immunocytochemistry, electron microscopy with dual immunogold labeling, and co-immunoprecipitation. Furthermore, we use surface biotinylation and live cell confocal and total internal fluorescence microscopy imaging in cardiomyocytes and cell lines to explore delivery of Cav1.2 to BIN1 structures. We find visually and quantitatively that dynamic microtubules are tethered to membrane scaffolded by BIN1, allowing targeted delivery of Cav1.2 from the microtubules to the associated membrane. Since Cav1.2 delivery to BIN1 occurs in reductionist non-myocyte cell lines, we find that other myocyte-specific structures are not essential and there is an intrinsic relationship between microtubule-based Cav1.2 delivery and its BIN1 scaffold. In differentiated mouse cardiomyocytes, knockdown of BIN1 reduces surface Cav1.2 and delays development of the calcium transient, indicating that Cav1.2 targeting to BIN1 is functionally important to cardiac calcium signaling. We have identified that membrane-associated BIN1 not only induces membrane curvature but can direct specific antegrade delivery of microtubule-transported membrane proteins. Furthermore, this paradigm provides a microtubule and BIN1-dependent mechanism of Cav1.2 delivery to T-tubules. This novel Cav1.2 trafficking pathway should serve as an important regulatory aspect of EC coupling, affecting cardiac contractility in mammalian hearts.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Canais de Cálcio Tipo L/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Retículo Sarcoplasmático/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Canais de Cálcio Tipo L/genética , Sinalização do Cálcio/genética , Sinalização do Cálcio/fisiologia , Linhagem Celular , Células Cultivadas , Células HeLa , Humanos , Imuno-Histoquímica , Imunoprecipitação , Masculino , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Contração Miocárdica/genética , Contração Miocárdica/fisiologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Miócitos Cardíacos/ultraestrutura , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Retículo Sarcoplasmático/ultraestrutura , Proteínas Supressoras de Tumor/genética
3.
J Pain Symptom Manage ; 66(1): e129-e151, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37003308

RESUMO

BACKGROUND: Although psychiatric comorbidities are common among individuals at end of life, their impact on outcomes is poorly understood. METHODS: We conducted a systematic literature review of six databases following preferred reporting items for systematic reviews and meta-analyses guidelines and aimed at assessing the relationship between psychiatric comorbidities and outcomes in palliative and end-of-life care. Six databases were included in our search. This review is registered on PROSPERO (CRD42022335922). RESULTS: Our search generated 7472 unique records. Eighty-eight full texts were reviewed for eligibility and 43 studies were included in the review. Clinically, psychiatric comorbidity was associated with poor quality of life, increased physical symptom burden, and low function. The impact of psychiatric comorbidity on health utilization varied, though many studies suggested that psychiatric comorbidity increased utilization of palliative care services. Quality of evidence was limited by lack of consistent approach to confounding variables as well as heterogeneity of the included studies. CONCLUSION: Psychiatric comorbidity is associated with significant differences in care utilization and clinical outcome among patients at end of life. In particular, patients with psychiatric comorbidity and serious illness are at high risk of poor quality of life and high symptom burden. Our finding that psychiatric comorbidity is associated with increased utilization of palliative care likely reflects the complexity and clinical needs of patients with serious illness and mental health needs. These data suggest that greater integration of mental health and palliative care services may enhance quality-of-life among patients at end of life.


Assuntos
Cuidados Paliativos na Terminalidade da Vida , Assistência Terminal , Humanos , Qualidade de Vida , Comorbidade , Morte
4.
J Clin Invest ; 118(8): 2969-78, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18618017

RESUMO

Sex differences in thrombosis are well described, but their underlying mechanism(s) are not completely understood. Coagulation proteins are synthesized in the liver, and liver gene expression is sex specific and depends on sex differences in growth hormone (GH) secretion--males secrete GH in a pulsatile fashion, while females secrete GH continuously. Accordingly, we tested the hypothesis that sex-specific GH secretion patterns cause sex differences in thrombosis. Male mice were more susceptible to thrombosis than females in the thromboplastin-induced pulmonary embolism model and showed shorter clotting times ex vivo. GH-deficient little (lit) mice were protected from thrombosis, and pulsatile GH given to lit mice restored the male clotting phenotype. Moreover, pulsatile GH administration resulted in a male clotting phenotype in control female mice, while continuous GH caused a female clotting phenotype in control male mice. Expression of the coagulation inhibitors Proc, Serpinc1, Serpind1, and Serpina5 were strongly modulated by sex-specific GH patterns, and GH modulated resistance to activated protein C. These results reveal what we believe to be a novel mechanism whereby sex-specific GH patterns mediate sex differences in thrombosis through coordinated changes in the expression of coagulation inhibitor genes in the liver.


Assuntos
Hormônio do Crescimento/metabolismo , Caracteres Sexuais , Trombose/metabolismo , Animais , Feminino , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos , Camundongos Mutantes , Trombose/genética
5.
Appl Immunohistochem Mol Morphol ; 10(2): 187-93, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12051640

RESUMO

Preliminary retrospective chromosomal analysis was performed using fluorescence in situ hybridization (FISH) with alphoid DNA probes for chromosomes 1, 3, 6, 8, 12, 17, and X. Twenty-four epithelial ovarian tumors were examined in this pilot study, including 8 borderline (LMP) serous tumors, 9 serous carcinoma, and 7 mucinous carcinoma. Hybridization signals were counted to demonstrate the frequency of aneusomy, trace chromosomal progression, and identify the predominance of chromosome copy number abnormalities that are specific to a particular histotype. The preliminary results revealed almost an equal number of mean aneusomies in serous (58.13 +/- 13%) and mucinous (64.33 +/- 10%) carcinoma, both of which were slightly higher than borderline serous tumors (50.57 +/- 17%). Hyposomies 3 and X were significantly higher in mucinous than in serous ovarian carcinomas, and lowest in borderline serous tumors (P<0.05 and P<0.01). Signal losses were a more frequent abnormality in all three histologic subtypes. Mucinous carcinomas showed a loss of chromosomes 8 (45.00 +/- 28%) and 3 (43.14 +/- 16%), in addition to a loss of chromosome X (56.29 +/- 12%). Serous carcinomas showed a gain of chromosome 1 (39.44 +/- 32%), followed by losses of chromosomes 6 (37.00 +/- 20%), 17 (36.44 +/- 19%), and 8 (36.89 +/- 19%). In borderline serous tumors, the most frequent findings were losses of chromosomes 6 (38.00 +/- 17%), 12 (36.88 +/- 17%), and 3 (36.13 +/- 21%). However, further research is necessary to substantiate these preliminary results and elucidate their clinical significance. A brief review of the literature pertaining to interphase cytogenetics in ovarian epithelial tumors is discussed also.


Assuntos
Aberrações Cromossômicas , Hibridização in Situ Fluorescente/métodos , Neoplasias Ovarianas/genética , Feminino , Humanos , Neoplasias Ovarianas/patologia , Projetos Piloto
6.
Heart Rhythm ; 9(5): 812-20, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22138472

RESUMO

BACKGROUND: Heart failure is a growing epidemic, and a typical aspect of heart failure pathophysiology is altered calcium transients. Normal cardiac calcium transients are initiated by Cav1.2 channels at cardiac T tubules. Bridging integrator 1 (BIN1) is a membrane scaffolding protein that causes Cav1.2 to traffic to T tubules in healthy hearts. The mechanisms of Cav1.2 trafficking in heart failure are not known. OBJECTIVE: To study BIN1 expression and its effect on Cav1.2 trafficking in failing hearts. METHODS: Intact myocardium and freshly isolated cardiomyocytes from nonfailing and end-stage failing human hearts were used to study BIN1 expression and Cav1.2 localization. To confirm Cav1.2 surface expression dependence on BIN1, patch-clamp recordings were performed of Cav1.2 current in cell lines with and without trafficking-competent BIN1. Also, in adult mouse cardiomyocytes, surface Cav1.2 and calcium transients were studied after small hairpin RNA-mediated knockdown of BIN1. For a functional readout in intact heart, calcium transients and cardiac contractility were analyzed in a zebrafish model with morpholino-mediated knockdown of BIN1. RESULTS: BIN1 expression is significantly decreased in failing cardiomyocytes at both mRNA (30% down) and protein (36% down) levels. Peripheral Cav1.2 is reduced to 42% by imaging, and a biochemical T-tubule fraction of Cav1.2 is reduced to 68%. The total calcium current is reduced to 41% in a cell line expressing a nontrafficking BIN1 mutant. In mouse cardiomyocytes, BIN1 knockdown decreases surface Cav1.2 and impairs calcium transients. In zebrafish hearts, BIN1 knockdown causes a 75% reduction in calcium transients and severe ventricular contractile dysfunction. CONCLUSIONS: The data indicate that BIN1 is significantly reduced in human heart failure, and this reduction impairs Cav1.2 trafficking, calcium transients, and contractility.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Canais de Cálcio Tipo L/metabolismo , Cálcio/metabolismo , Insuficiência Cardíaca/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Nucleares/metabolismo , RNA Mensageiro/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Adulto , Animais , Linhagem Celular , Humanos , Camundongos , Técnicas de Patch-Clamp , Transporte Proteico
7.
J Clin Invest ; 120(1): 266-79, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20038810

RESUMO

Gap junctions form electrical conduits between adjacent myocardial cells, permitting rapid spatial passage of the excitation current essential to each heartbeat. Arrhythmogenic decreases in gap junction coupling are a characteristic of stressed, failing, and aging myocardium, but the mechanisms of decreased coupling are poorly understood. We previously found that microtubules bearing gap junction hemichannels (connexons) can deliver their cargo directly to adherens junctions. The specificity of this delivery requires the microtubule plus-end tracking protein EB1. We performed this study to investigate the hypothesis that the oxidative stress that accompanies acute and chronic ischemic disease perturbs connexon forward trafficking. We found that EB1 was displaced in ischemic human hearts, stressed mouse hearts, and isolated cells subjected to oxidative stress. As a result, we observed limited microtubule interaction with adherens junctions at intercalated discs and reduced connexon delivery and gap junction coupling. A point mutation within the tubulin-binding domain of EB1 reproduced EB1 displacement and diminished connexon delivery, confirming that EB1 displacement can limit gap junction coupling. In zebrafish hearts, oxidative stress also reduced the membrane localization of connexin and slowed the spatial spread of excitation. We anticipate that protecting the microtubule-based forward delivery apparatus of connexons could improve cell-cell coupling and reduce ischemia-related cardiac arrhythmias.


Assuntos
Conexina 43/fisiologia , Miocárdio/metabolismo , Animais , Comunicação Celular , Membrana Celular/metabolismo , Feminino , Junções Comunicantes/fisiologia , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/fisiologia , Microtúbulos/fisiologia , Isquemia Miocárdica/metabolismo , Estresse Oxidativo , Transporte Proteico , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa