RESUMO
BET bromodomain inhibitors (BBDIs) are candidate therapeutic agents for triple-negative breast cancer (TNBC) and other cancer types, but inherent and acquired resistance to BBDIs limits their potential clinical use. Using CRISPR and small-molecule inhibitor screens combined with comprehensive molecular profiling of BBDI response and resistance, we identified synthetic lethal interactions with BBDIs and genes that, when deleted, confer resistance. We observed synergy with regulators of cell cycle progression, YAP, AXL, and SRC signaling, and chemotherapeutic agents. We also uncovered functional similarities and differences among BRD2, BRD4, and BRD7. Although deletion of BRD2 enhances sensitivity to BBDIs, BRD7 loss leads to gain of TEAD-YAP chromatin binding and luminal features associated with BBDI resistance. Single-cell RNA-seq, ATAC-seq, and cellular barcoding analysis of BBDI responses in sensitive and resistant cell lines highlight significant heterogeneity among samples and demonstrate that BBDI resistance can be pre-existing or acquired.
Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Proteínas/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Azepinas/farmacologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proteínas Cromossômicas não Histona/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos NOD , Proteínas Nucleares/metabolismo , Proteínas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Triazóis/farmacologia , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismoRESUMO
BACKGROUND: SLC45A3 is the second most common ERG partner in prostate cancer (PrCa). Coexisting TMPRSS2 and SLC45A3 rearrangements are found in a subset of cases, but the meaning is still unknown. METHODS: SLC45A3-ERG and TMPRSS2-ERG rearrangements and their association with ERG and PTEN expression and with clinical and pathological features have been analyzed in 80 PrCa (PSMAR-Biobank, Barcelona, Spain). ERG and PTEN mRNA were assessed by qRT-PCR; TMPRSS2-ERG and SLC45A3-ERG by RT-PCR, FISH, and direct sequencing; and ERG expression by IHC. The endpoints were Gleason score (GS), stage, and PSA progression-free survival. RESULTS: Single TMPRSS2-ERG was found in 51.6% GS ≤ 7 and 22.2% GS ≥ 8 tumors (P = 0.027). SLC45A3-ERG was found in 25 cases, 20 of them with concurrent TMPRSS2-ERG rearrangement: 11.5% GS = 6, 22.2% GS = 7, and 50% GS ≥ 8 tumors (P = 0.013). Double rearrangements were associated with higher levels of ERG mRNA (P = 0.04). Double rearrangement plus PTEN loss was detected in 0% GS = 6; 14.7% GS = 7, and 29.4% GS ≥ 8 tumors (P = 0.032). Furthermore, this triple change was present in 19.2% stage T3-4 but not in any of stage T2 tumors (P = 0.05). No relationship was found with PSA progression-free survival. CONCLUSIONS: Single TMPRSS2-ERG translocation is associated with low grade PrCa. Subsequent development of SLC45A3-ERG results in higher ERG expression. The combination of double rearrangement plus PTEN loss, according to our series, is never found in low grade, low stage tumors. These findings could be potentially useful in therapeutic decision making in PrCa. Tumors with combined TMPRSS2-ERG/SLC45A3-ERG fusions plus PTEN loss should be excluded from watchful waiting and are candidates for intensive therapy. Prostate 76:854-865, 2016. © 2016 Wiley Periodicals, Inc.
Assuntos
Proteínas de Membrana Transportadoras/genética , Proteínas de Fusão Oncogênica/genética , PTEN Fosfo-Hidrolase/genética , Neoplasias da Próstata/genética , Intervalo Livre de Doença , Rearranjo Gênico , Humanos , Masculino , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Transporte de Monossacarídeos , Gradação de Tumores , Proteínas de Fusão Oncogênica/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Próstata/metabolismo , Próstata/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Regulador Transcricional ERG/genética , Regulador Transcricional ERG/metabolismoRESUMO
BACKGROUND: There is controversy in the literature on the role of the fusion TMPRSS2-ERG in the pathogenesis and progression of prostate cancer. The quantitative differences in TMPRSS2-ERG fusion expression have received very limited attention in the literature. METHODS: We have quantitatively analyzed the mRNA levels of TMPRSS2-ERG, ERG, PTEN, and AR (n = 83), as well as ERG immunostaining (n = 78) in a series of prostate tumors. RESULTS: Among the TMPRSS2-ERG cases (n = 57), high fusion levels were associated with GS ≥8 (P = 0.025). ERG mRNA overexpression was associated with GS ≥8 (P = 0.047), and with stage T3-T4 tumors (P = 0.032). Among the ERG overexpressing cases (n = 54), higher expression levels were found in 92.3% of GS ≥8 tumors (P = 0.02). ERG immunostaining, regardless of staining intensity, was also associated with high stage (P = 0.05). There was a statistical association between ERG immunostaining and PSA progression-free survival (Log Rank test, P = 0.048). Decreased PTEN expression was associated with TMPRSS2-ERG (P = 0.01), ERG mRNA overexpression (P = 0.003) and ERG immunostaining (P = 0.007). Furthermore, decreased PTEN expression, alone (P = 0.041) and also combined with TMPRSS2-ERG (P = 0.04) or with ERG overexpression (P = 0.04) was associated with GS ≥7 tumors. CONCLUSIONS: Although more studies are needed to further clarify their role, our findings emphasize that the expression levels of the TMPRSS2-ERG fusion and ERG mRNA, rather than their mere presence, are related to a more aggressive phenotype, have an effect on prognosis and could be molecular markers of progression for prostate cancer. Furthermore, ERG immunohistochemistry could be also a potentially useful prognostic factor.
Assuntos
Proteínas de Fusão Oncogênica/genética , Neoplasias da Próstata , Transativadores/genética , Idoso , Progressão da Doença , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Fusão Oncogênica , Valor Preditivo dos Testes , Prognóstico , Antígeno Prostático Específico/sangue , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Regulador Transcricional ERGRESUMO
Immunotherapies have yet to demonstrate significant efficacy in the treatment of hormone receptor-positive (HR+) breast cancer. Given that endocrine therapy (ET) is the primary approach for treating HR+ breast cancer, we investigated the effects of ET on the tumor immune microenvironment (TME) in HR+ breast cancer. Spatial proteomics of primary HR+ breast cancer samples obtained at baseline and after ET from patients enrolled in a neoadjuvant clinical trial (NCT02764541) indicated that ET upregulated ß2-microglobulin and influenced the TME in a manner that promotes enhanced immunogenicity. To gain a deeper understanding of the underlying mechanisms, the intrinsic effects of ET on cancer cells were explored, which revealed that ET plays a crucial role in facilitating the chromatin binding of RelA, a key component of the NF-κB complex. Consequently, heightened NF-κB signaling enhanced the response to interferon-gamma, leading to the upregulation of ß2-microglobulin and other antigen presentation-related genes. Further, modulation of NF-κB signaling using a SMAC mimetic in conjunction with ET augmented T-cell migration and enhanced MHC-I-specific T-cell-mediated cytotoxicity. Remarkably, the combination of ET and SMAC mimetics, which also blocks prosurvival effects of NF-κB signaling through the degradation of inhibitors of apoptosis proteins, elicited tumor regression through cell autonomous mechanisms, providing additional support for their combined use in HR+ breast cancer. SIGNIFICANCE: Adding SMAC mimetics to endocrine therapy enhances tumor regression in a cell autonomous manner while increasing tumor immunogenicity, indicating that this combination could be an effective treatment for HR+ patients with breast cancer.
Assuntos
Neoplasias da Mama , NF-kappa B , Humanos , Feminino , NF-kappa B/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Neoplasias da Mama/patologia , Apresentação de Antígeno , Proteínas Reguladoras de Apoptose , Apoptose , Linhagem Celular Tumoral , Proteínas Mitocondriais/metabolismo , Microambiente TumoralRESUMO
Triple-negative breast cancer (TNBC) is a heterogeneous disease with limited treatment options. To characterize TNBC heterogeneity, we defined transcriptional, epigenetic, and metabolic subtypes and subtype-driving super-enhancers and transcription factors by combining functional and molecular profiling with computational analyses. Single-cell RNA sequencing revealed relative homogeneity of the major transcriptional subtypes (luminal, basal, and mesenchymal) within samples. We found that mesenchymal TNBCs share features with mesenchymal neuroblastoma and rhabdoid tumors and that the PRRX1 transcription factor is a key driver of these tumors. PRRX1 is sufficient for inducing mesenchymal features in basal but not in luminal TNBC cells via reprogramming super-enhancer landscapes, but it is not required for mesenchymal state maintenance or for cellular viability. Our comprehensive, large-scale, multiplatform, multiomics study of both experimental and clinical TNBC is an important resource for the scientific and clinical research communities and opens venues for future investigation.
Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/patologia , Fatores de Transcrição/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/metabolismoRESUMO
Tumor heterogeneity is a major challenge for oncology drug discovery and development. Understanding of the spatial tumor landscape is key to identifying new targets and impactful model systems. Here, we test the utility of spatial transcriptomics (ST) for oncology discovery by profiling 40 tissue sections and 80,024 capture spots across a diverse set of tissue types, sample formats, and RNA capture chemistries. We verify the accuracy and fidelity of ST by leveraging matched pathology analysis, which provides a ground truth for tissue section composition. We then use spatial data to demonstrate the capture of key tumor depth features, identifying hypoxia, necrosis, vasculature, and extracellular matrix variation. We also leverage spatial context to identify relative cell-type locations showing the anti-correlation of tumor and immune cells in syngeneic cancer models. Lastly, we demonstrate target identification approaches in clinical pancreatic adenocarcinoma samples, highlighting tumor intrinsic biomarkers and paracrine signaling.
Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Humanos , Transcriptoma/genética , Neoplasias Pancreáticas/diagnóstico , Oncologia , Perfilação da Expressão Gênica , Biomarcadores Tumorais/genéticaRESUMO
Most invasive lobular breast cancers (ILC) are of the luminal A subtype and are strongly hormone receptor-positive. Yet, ILC is relatively resistant to tamoxifen and associated with inferior long-term outcomes compared with invasive ductal cancers (IDC). In this study, we sought to gain mechanistic insights into these clinical findings that are not explained by the genetic landscape of ILC and to identify strategies to improve patient outcomes. A comprehensive analysis of the epigenome of ILC in preclinical models and clinical samples showed that, compared with IDC, ILC harbored a distinct chromatin state linked to gained recruitment of FOXA1, a lineage-defining pioneer transcription factor. This resulted in an ILC-unique FOXA1-estrogen receptor (ER) axis that promoted the transcription of genes associated with tumor progression and poor outcomes. The ILC-unique FOXA1-ER axis led to retained ER chromatin binding after tamoxifen treatment, which facilitated tamoxifen resistance while remaining strongly dependent on ER signaling. Mechanistically, gained FOXA1 binding was associated with the autoinduction of FOXA1 in ILC through an ILC-unique FOXA1 binding site. Targeted silencing of this regulatory site resulted in the disruption of the feed-forward loop and growth inhibition in ILC. In summary, ILC is characterized by a unique chromatin state and FOXA1-ER axis that is associated with tumor progression, offering a novel mechanism of tamoxifen resistance. These results underscore the importance of conducting clinical trials dedicated to patients with ILC in order to optimize treatments in this breast cancer subtype. SIGNIFICANCE: A unique FOXA1-ER axis in invasive lobular breast cancer promotes disease progression and tamoxifen resistance, highlighting a potential therapeutic avenue for clinical investigations dedicated to this disease. See related commentary by Blawski and Toska, p. 3668.
Assuntos
Neoplasias da Mama , Carcinoma Ductal de Mama , Carcinoma Lobular , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/patologia , Carcinoma Lobular/tratamento farmacológico , Carcinoma Lobular/genética , Carcinoma Lobular/metabolismo , Cromatina/genética , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Prognóstico , Receptores de Estrogênio/metabolismo , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêuticoRESUMO
How cancer cells adapt to evade the therapeutic effects of drugs targeting oncogenic drivers is poorly understood. Here we report an epigenetic mechanism leading to the adaptive resistance of triple-negative breast cancer (TNBC) to fibroblast growth factor receptor (FGFR) inhibitors. Prolonged FGFR inhibition suppresses the function of BRG1-dependent chromatin remodelling, leading to an epigenetic state that derepresses YAP-associated enhancers. These chromatin changes induce the expression of several amino acid transporters, resulting in increased intracellular levels of specific amino acids that reactivate mTORC1. Consistent with this mechanism, addition of mTORC1 or YAP inhibitors to FGFR blockade synergistically attenuated the growth of TNBC patient-derived xenograft models. Collectively, these findings reveal a feedback loop involving an epigenetic state transition and metabolic reprogramming that leads to adaptive therapeutic resistance and provides potential therapeutic strategies to overcome this mechanism of resistance.
Assuntos
Antineoplásicos/farmacologia , Proteínas Cromossômicas não Histona/metabolismo , Resistencia a Medicamentos Antineoplásicos , Compostos de Fenilureia/farmacologia , Pirimidinas/farmacologia , Receptores de Fatores de Crescimento de Fibroblastos/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Proteínas de Sinalização YAP/metabolismo , Aminoácidos/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Linhagem Celular Tumoral , Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona/genética , DNA Helicases/genética , DNA Helicases/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Sinergismo Farmacológico , Epigênese Genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Terapia de Alvo Molecular , Complexos Multiproteicos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas de Sinalização YAP/antagonistas & inibidores , Proteínas de Sinalização YAP/genéticaRESUMO
Hotspot mutation of IKZF3 (IKZF3-L162R) has been identified as a putative driver of chronic lymphocytic leukemia (CLL), but its function remains unknown. Here, we demonstrate its driving role in CLL through a B cell-restricted conditional knockin mouse model. Mutant Ikzf3 alters DNA binding specificity and target selection, leading to hyperactivation of B cell receptor (BCR) signaling, overexpression of nuclear factor κB (NF-κB) target genes, and development of CLL-like disease in elderly mice with a penetrance of ~40%. Human CLL carrying either IKZF3 mutation or high IKZF3 expression was associated with overexpression of BCR/NF-κB pathway members and reduced sensitivity to BCR signaling inhibition by ibrutinib. Our results thus highlight IKZF3 oncogenic function in CLL via transcriptional dysregulation and demonstrate that this pro-survival function can be achieved by either somatic mutation or overexpression of this CLL driver. This emphasizes the need for combinatorial approaches to overcome IKZF3-mediated BCR inhibitor resistance.
Assuntos
Linfócitos B/patologia , Fator de Transcrição Ikaros/genética , Leucemia Linfocítica Crônica de Células B/genética , Mutação/genética , Transcrição Gênica/genética , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , NF-kappa B/genética , Receptores de Antígenos de Linfócitos B/genética , Transdução de Sinais/genéticaRESUMO
Pharmacologic inhibitors of cyclin-dependent kinases 4 and 6 (CDK4/6) were designed to induce cancer cell cycle arrest. Recent studies have suggested that these agents also exert other effects, influencing cancer cell immunogenicity, apoptotic responses, and differentiation. Using cell-based and mouse models of breast cancer together with clinical specimens, we show that CDK4/6 inhibitors induce remodeling of cancer cell chromatin characterized by widespread enhancer activation, and that this explains many of these effects. The newly activated enhancers include classical super-enhancers that drive luminal differentiation and apoptotic evasion, as well as a set of enhancers overlying endogenous retroviral elements that is enriched for proximity to interferon-driven genes. Mechanistically, CDK4/6 inhibition increases the level of several Activator Protein-1 (AP-1) transcription factor proteins, which are in turn implicated in the activity of many of the new enhancers. Our findings offer insights into CDK4/6 pathway biology and should inform the future development of CDK4/6 inhibitors.
Assuntos
Neoplasias da Mama , Fator de Transcrição AP-1 , Animais , Neoplasias da Mama/tratamento farmacológico , Pontos de Checagem do Ciclo Celular , Quinase 4 Dependente de Ciclina/genética , Feminino , Genes cdc , Humanos , Camundongos , Fator de Transcrição AP-1/genéticaRESUMO
Critical developmental "master transcription factors" (MTFs) can be subverted during tumorigenesis to control oncogenic transcriptional programs. Current approaches to identifying MTFs rely on ChIP-seq data, which is unavailable for many cancers. We developed the CaCTS (Cancer Core Transcription factor Specificity) algorithm to prioritize candidate MTFs using pan-cancer RNA sequencing data. CaCTS identified candidate MTFs across 34 tumor types and 140 subtypes including predictions for cancer types/subtypes for which MTFs are unknown, including e.g. PAX8, SOX17, and MECOM as candidates in ovarian cancer (OvCa). In OvCa cells, consistent with known MTF properties, these factors are required for viability, lie proximal to superenhancers, co-occupy regulatory elements globally, co-bind loci encoding OvCa biomarkers, and are sensitive to pharmacologic inhibition of transcription. Our predictions of MTFs, especially for tumor types with limited understanding of transcriptional drivers, pave the way to therapeutic targeting of MTFs in a broad spectrum of cancers.
RESUMO
Immune checkpoint blockade (ICB) therapy revolutionized cancer treatment, but many patients with impaired MHC-I expression remain refractory. Here, we combined FACS-based genome-wide CRISPR screens with a data-mining approach to identify drugs that can upregulate MHC-I without inducing PD-L1. CRISPR screening identified TRAF3, a suppressor of the NFκB pathway, as a negative regulator of MHC-I but not PD-L1. The Traf3-knockout gene expression signature is associated with better survival in ICB-naïve patients with cancer and better ICB response. We then screened for drugs with similar transcriptional effects as this signature and identified Second Mitochondria-derived Activator of Caspase (SMAC) mimetics. We experimentally validated that the SMAC mimetic birinapant upregulates MHC-I, sensitizes cancer cells to T cell-dependent killing, and adds to ICB efficacy. Our findings provide preclinical rationale for treating tumors expressing low MHC-I expression with SMAC mimetics to enhance sensitivity to immunotherapy. The approach used in this study can be generalized to identify other drugs that enhance immunotherapy efficacy. SIGNIFICANCE: MHC-I loss or downregulation in cancer cells is a major mechanism of resistance to T cell-based immunotherapies. Our study reveals that birinapant may be used for patients with low baseline MHC-I to enhance ICB response. This represents promising immunotherapy opportunities given the biosafety profile of birinapant from multiple clinical trials.This article is highlighted in the In This Issue feature, p. 1307.
Assuntos
Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias/tratamento farmacológico , Antígeno B7-H1/metabolismo , Mineração de Dados , Perfilação da Expressão Gênica , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Imunoterapia , Microambiente Tumoral/efeitos dos fármacosRESUMO
Neuroendocrine carcinomas (NEC) are tumors expressing markers of neuronal differentiation that can arise at different anatomic sites but have strong histological and clinical similarities. Here we report the chromatin landscapes of a range of human NECs and show convergence to the activation of a common epigenetic program. With a particular focus on treatment emergent neuroendocrine prostate cancer (NEPC), we analyze cell lines, patient-derived xenograft (PDX) models and human clinical samples to show the existence of two distinct NEPC subtypes based on the expression of the neuronal transcription factors ASCL1 and NEUROD1. While in cell lines and PDX models these subtypes are mutually exclusive, single-cell analysis of human clinical samples exhibits a more complex tumor structure with subtypes coexisting as separate sub-populations within the same tumor. These tumor sub-populations differ genetically and epigenetically contributing to intra- and inter-tumoral heterogeneity in human metastases. Overall, our results provide a deeper understanding of the shared clinicopathological characteristics shown by NECs. Furthermore, the intratumoral heterogeneity of human NEPCs suggests the requirement of simultaneous targeting of coexisting tumor populations as a therapeutic strategy.
Assuntos
Carcinoma Neuroendócrino/genética , Neoplasias da Próstata/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Cromatina/genética , Cromatina/metabolismo , Epigênese Genética/genética , Regulação Neoplásica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Masculino , Fatores de Transcrição/genéticaRESUMO
The TMPRSS2-ERG fusion is the most common genomic rearrangement in human prostate cancer. However, in established adenocarcinoma, it is unknown how the ERG oncogene promotes a cancerous phenotype and maintains downstream androgen receptor (AR) signaling pathways. In this study, we utilized a murine prostate organoid system to explore the effects of ERG on tumorigenesis and determined the mechanism underlying prostate cancer dependence on ERG. Prostate organoids lacking PTEN and overexpressing ERG (Pten-/- R26-ERG) faithfully recapitulated distinct stages of prostate cancer disease progression. In this model, deletion of ERG significantly dampened AR-dependent gene expression. While ERG was able to reprogram the AR cistrome in the process of prostate carcinogenesis, ERG knockout in established prostate cancer organoids did not drastically alter AR binding, H3K27ac enhancer, or open chromatin profiles at these reprogrammed sites. Proteomic analysis of DNA-bound AR complexes demonstrated that ERG deletion causes a loss of recruitment of critical AR coregulators and basal transcriptional machinery, including NCOA3 and RNA polymerase II, but does not alter AR binding itself. Together, these data reveal a novel mechanism of ERG oncogene addiction in prostate cancer, whereby ERG facilitates AR signaling by maintaining coregulator complexes at AR bound sites across the genome. SIGNIFICANCE: These findings exploit murine organoid models to uncover the mechanism of ERG-mediated tumorigenesis and subsequent oncogenic dependencies in prostate cancer.
Assuntos
Regulação Neoplásica da Expressão Gênica/fisiologia , Proteínas Oncogênicas/metabolismo , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/metabolismo , Transdução de Sinais/fisiologia , Regulador Transcricional ERG/metabolismo , Animais , Masculino , Complexo Mediador/metabolismo , Camundongos , OrganoidesRESUMO
Fixed-tissue ChIP-seq for H3K27 acetylation (H3K27ac) profiling (FiTAc-seq) is an epigenetic method for profiling active enhancers and promoters in formalin-fixed, paraffin-embedded (FFPE) tissues. We previously developed a modified ChIP-seq protocol (FiT-seq) for chromatin profiling in FFPE. FiT-seq produces high-quality chromatin profiles particularly for methylated histone marks but is not optimized for H3K27ac profiling. FiTAc-seq is a modified protocol that replaces the proteinase K digestion applied in FiT-seq with extended heating at 65 °C in a higher concentration of detergent and a minimized sonication step, to produce robust genome-wide H3K27ac maps from clinical samples. FiTAc-seq generates high-quality enhancer landscapes and super-enhancer (SE) annotation in numerous archived FFPE samples from distinct tumor types. This approach will be of great interest for both basic and clinical researchers. The entire protocol from FFPE blocks to sequence-ready library can be accomplished within 4 d.
Assuntos
Sequenciamento de Cromatina por Imunoprecipitação/métodos , Histonas/química , Histonas/metabolismo , Lisina/metabolismo , Inclusão em Parafina , Fixação de Tecidos , Acetilação , Animais , Fígado/citologia , CamundongosRESUMO
Epigenetic processes govern prostate cancer (PCa) biology, as evidenced by the dependency of PCa cells on the androgen receptor (AR), a prostate master transcription factor. We generated 268 epigenomic datasets spanning two state transitions-from normal prostate epithelium to localized PCa to metastases-in specimens derived from human tissue. We discovered that reprogrammed AR sites in metastatic PCa are not created de novo; rather, they are prepopulated by the transcription factors FOXA1 and HOXB13 in normal prostate epithelium. Reprogrammed regulatory elements commissioned in metastatic disease hijack latent developmental programs, accessing sites that are implicated in prostate organogenesis. Analysis of reactivated regulatory elements enabled the identification and functional validation of previously unknown metastasis-specific enhancers at HOXB13, FOXA1 and NKX3-1. Finally, we observed that prostate lineage-specific regulatory elements were strongly associated with PCa risk heritability and somatic mutation density. Examining prostate biology through an epigenomic lens is fundamental for understanding the mechanisms underlying tumor progression.
Assuntos
Neoplasias da Próstata/genética , Linhagem Celular , Linhagem Celular Tumoral , Progressão da Doença , Epigenômica/métodos , Regulação Neoplásica da Expressão Gênica/genética , Células HEK293 , Fator 3-alfa Nuclear de Hepatócito/genética , Humanos , Masculino , Próstata/patologia , Neoplasias da Próstata/patologia , Receptores Androgênicos/genética , Sequências Reguladoras de Ácido Nucleico/genéticaRESUMO
Most pancreatic neuroendocrine tumors (PNETs) do not produce excess hormones and are therefore considered 'non-functional'1-3. As clinical behaviors vary widely and distant metastases are eventually lethal2,4, biological classifications might guide treatment. Using enhancer maps to infer gene regulatory programs, we find that non-functional PNETs fall into two major subtypes, with epigenomes and transcriptomes that partially resemble islet α- and ß-cells. Transcription factors ARX and PDX1 specify these normal cells, respectively5,6, and 84% of 142 non-functional PNETs expressed one or the other factor, occasionally both. Among 103 cases, distant relapses occurred almost exclusively in patients with ARX+PDX1- tumors and, within this subtype, in cases with alternative lengthening of telomeres. These markedly different outcomes belied similar clinical presentations and histology and, in one cohort, occurred irrespective of MEN1 mutation. This robust molecular stratification provides insight into cell lineage correlates of non-functional PNETs, accurately predicts disease course and can inform postoperative clinical decisions.
Assuntos
Elementos Facilitadores Genéticos , Neoplasias Pancreáticas/genética , Linhagem da Célula , Proteínas de Homeodomínio/análise , Humanos , Mutação , Neoplasias Pancreáticas/química , Proteínas Proto-Oncogênicas/genética , Telômero , Transativadores/análise , Fatores de Transcrição/análiseRESUMO
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMO
Sustained treatment of estrogen receptor (ER)-positive breast cancer with ER-targeting drugs results in ER mutations and refractory unresponsive cancers. Androgen receptor (AR), which is expressed in 80%-95% of ER-positive breast cancers, could serve as an alternate therapeutic target. Although AR agonists were used in the past to treat breast cancer, their use is currently infrequent due to virilizing side effects. Discovery of tissue-selective AR modulators (SARMs) has renewed interest in using AR agonists to treat breast cancer. Using translational models, we show that AR agonist and SARM, but not antagonist, inhibit the proliferation and growth of ER-positive breast cancer cells, patient-derived tissues, and patient-derived xenografts (PDX). Ligand-activated AR inhibits wild-type and mutant ER activity by reprogramming the ER and FOXA1 cistrome and rendering tumor growth inhibition. These findings suggest that ligand-activated AR may function as a non-canonical inhibitor of ER and that AR agonists may offer a safe and effective treatment for ER-positive breast cancer.
RESUMO
Nuclear FOXOs mediate cell cycle arrest and promote apoptosis. FOXOs and p53 could have similar effects as tumor suppressor genes. In spite of extensive literature, little is known about the role of FOXO1 and its relationship with p53 status in bladder cancer. Expression of FOXO1 and p53 were analyzed by immunohistochemistry in 162 urothelial carcinomas (UC). Decreased FOXO1 expression, p53 overexpression and the combination FOXO1 down-regulation/p53 overexpression were strongly associated with high grade (P=.030; P=.017; P=.004, respectively), high stage (P=.0001; P<.0001; P<.0001, respectively) or both (P=.0004; P<.0001; P<.0001, respectively). In the overall series of cases, p53 overexpression was associated with tumor progression (hazard ratio [HR]=3.18, 95% confidence interval [CI] 1.19-8.48, P=.02), but this association was even stronger if having any alteration in any of the 2 genes was considered (HR=3.51, 95% CI 1.34-9.21, P=.01). Having both FOXO1 down-regulation and p53 overexpression was associated with disease recurrence (HR=2.75, 95% CI 1.06-7.13, P=.03). In the analysis of the different subgroups, having any alteration in any of the 2 genes was associated with progression in low-grade (P=.005) and pTa (P=.006) tumors. Finally, the combined FOXO1 down-regulation/p53 overexpression was associated with disease recurrence specifically in high-grade (P=.04) and in pT1 stage tumors (P=.007). Adding FOXO1 expression to the immunohistochemical analysis of p53 can provide relevant prognostic information on progression and recurrence of bladder cancer. It may be particularly informative on the risk of progression in the more indolent and on the risk of recurrence in the more aggressive tumors.