Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
PLoS Biol ; 21(2): e3001991, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36854036

RESUMO

The conservation of evolutionary history has been linked to increased benefits for humanity and can be captured by phylogenetic diversity (PD). The Evolutionarily Distinct and Globally Endangered (EDGE) metric has, since 2007, been used to prioritise threatened species for practical conservation that embody large amounts of evolutionary history. While there have been important research advances since 2007, they have not been adopted in practice because of a lack of consensus in the conservation community. Here, building from an interdisciplinary workshop to update the existing EDGE approach, we present an "EDGE2" protocol that draws on a decade of research and innovation to develop an improved, consistent methodology for prioritising species conservation efforts. Key advances include methods for dealing with uncertainty and accounting for the extinction risk of closely related species. We describe EDGE2 in terms of distinct components to facilitate future revisions to its constituent parts without needing to reconsider the whole. We illustrate EDGE2 by applying it to the world's mammals. As we approach a crossroads for global biodiversity policy, this Consensus View shows how collaboration between academic and applied conservation biologists can guide effective and practical priority-setting to conserve biodiversity.


Assuntos
Biodiversidade , Espécies em Perigo de Extinção , Animais , Filogenia , Evolução Biológica , Ciências Humanas , Mamíferos
2.
New Phytol ; 244(1): 307-317, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38702970

RESUMO

Plants employ a diversity of reproductive safeguarding strategies to circumvent the challenge of pollen limitation. Focusing on southern African Lachenalia (Asparagaceae: Scilloideae), we test the hypothesis that the evolution of reproductive safeguarding traits (self-compatibility, autonomous selfing, bird pollination and clonal propagation) is favoured in species occupying conditions of low insect abundance imposed by critically infertile fynbos heathland vegetation and by flowering outside the austral spring insect abundance peak. We trace the evolution of these traits and selective regimes on a dated, multi-locus phylogeny of Lachenalia and assess their evolutionary associations using ordinary and phylogenetic regression. Ancestral state reconstructions identify an association with non-fynbos vegetation and spring flowering as ancestral in Lachenalia, the transition to fynbos vegetation and non-spring flowering taking place multiple times. They also show that self-compatibility, autofertility, bird pollination and production of multiple clonal offsets have evolved repeatedly. Regression models suggest that bird pollination and self-compatibility are selected for in fynbos and in non-spring flowering lineages, with autofertility being positively associated with non-spring flowering. These patterns support the interpretation of these traits as reproductive safeguarding adaptations under reduced insect pollinator abundance. We find no evidence to support the interpretation of clonal propagation as a reproductive safeguarding strategy.


Assuntos
Evolução Biológica , Ecossistema , Filogenia , Polinização , Estações do Ano , Polinização/fisiologia , Animais , Flores/fisiologia , Insetos/fisiologia , Aves/fisiologia , Reprodução Assexuada , Reprodução/fisiologia
3.
New Phytol ; 243(6): 2470-2485, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39080986

RESUMO

Angiosperms with large genomes experience nuclear-, cellular-, and organism-level constraints that may limit their phenotypic plasticity and ecological niche, which could increase their risk of extinction. Therefore, we test the hypotheses that large-genomed species are more likely to be threatened with extinction than those with small genomes, and that the effect of genome size varies across three selected covariates: life form, endemism, and climatic zone. We collated genome size and extinction risk information for a representative sample of angiosperms comprising 3250 species, which we analyzed alongside life form, endemism, and climatic zone variables using a phylogenetic framework. Genome size is positively correlated with extinction risk, a pattern driven by a signal in herbaceous but not woody species, regardless of climate and endemism. The influence of genome size is stronger in endemic herbaceous species, but is relatively homogenous across different climates. Beyond its indirect link via endemism and climate, genome size is associated with extinction risk directly and significantly. Genome size may serve as a proxy for difficult-to-measure parameters associated with resilience and vulnerability in herbaceous angiosperms. Therefore, it merits further exploration as a useful biological attribute for understanding intrinsic extinction risk and augmenting plant conservation efforts.


Assuntos
Extinção Biológica , Tamanho do Genoma , Magnoliopsida , Filogenia , Magnoliopsida/genética , Magnoliopsida/fisiologia , Genoma de Planta , Clima
4.
New Phytol ; 242(2): 744-759, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38264772

RESUMO

Angiosperms, which inhabit diverse environments across all continents, exhibit significant variation in genome sizes, making them an excellent model system for examining hypotheses about the global distribution of genome size. These include the previously proposed large genome constraint, mutational hazard, polyploidy-mediated, and climate-mediated hypotheses. We compiled the largest genome size dataset to date, encompassing 16 017 (> 5% of known) angiosperm species, and analyzed genome size distribution using a comprehensive geographic distribution dataset for all angiosperms. We observed that angiosperms with large range sizes generally had small genomes, supporting the large genome constraint hypothesis. Climate was shown to exert a strong influence on genome size distribution along the global latitudinal gradient, while the frequency of polyploidy and the type of growth form had negligible effects. In contrast to the unimodal patterns along the global latitudinal gradient shown by plant size traits and polyploid proportions, the increase in angiosperm genome size from the equator to 40-50°N/S is probably mediated by different (mostly climatic) mechanisms than the decrease in genome sizes observed from 40 to 50°N northward. Our analysis suggests that the global distribution of genome sizes in angiosperms is mainly shaped by climatically mediated purifying selection, genetic drift, relaxed selection, and environmental filtering.


Assuntos
Magnoliopsida , Magnoliopsida/genética , Tamanho do Genoma , Genoma de Planta , Poliploidia , Plantas/genética , Filogenia
5.
New Phytol ; 242(2): 727-743, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38009920

RESUMO

Poales are one of the most species-rich, ecologically and economically important orders of plants and often characterise open habitats, enabled by unique suites of traits. We test six hypotheses regarding the evolution and assembly of Poales in open and closed habitats throughout the world, and examine whether diversification patterns demonstrate parallel evolution. We sampled 42% of Poales species and obtained taxonomic and biogeographic data from the World Checklist of Vascular Plants database, which was combined with open/closed habitat data scored by taxonomic experts. A dated supertree of Poales was constructed. We integrated spatial phylogenetics with regionalisation analyses, historical biogeography and ancestral state estimations. Diversification in Poales and assembly of open and closed habitats result from dynamic evolutionary processes that vary across lineages, time and space, most prominently in tropical and southern latitudes. Our results reveal parallel and recurrent patterns of habitat and trait transitions in the species-rich families Poaceae and Cyperaceae. Smaller families display unique and often divergent evolutionary trajectories. The Poales have achieved global dominance via parallel evolution in open habitats, with notable, spatially and phylogenetically restricted divergences into strictly closed habitats.


Assuntos
Ecossistema , Poaceae , Filogenia , Evolução Biológica
6.
New Phytol ; 242(2): 700-716, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382573

RESUMO

Orchids constitute one of the most spectacular radiations of flowering plants. However, their origin, spread across the globe, and hotspots of speciation remain uncertain due to the lack of an up-to-date phylogeographic analysis. We present a new Orchidaceae phylogeny based on combined high-throughput and Sanger sequencing data, covering all five subfamilies, 17/22 tribes, 40/49 subtribes, 285/736 genera, and c. 7% (1921) of the 29 524 accepted species, and use it to infer geographic range evolution, diversity, and speciation patterns by adding curated geographical distributions from the World Checklist of Vascular Plants. The orchids' most recent common ancestor is inferred to have lived in Late Cretaceous Laurasia. The modern range of Apostasioideae, which comprises two genera with 16 species from India to northern Australia, is interpreted as relictual, similar to that of numerous other groups that went extinct at higher latitudes following the global climate cooling during the Oligocene. Despite their ancient origin, modern orchid species diversity mainly originated over the last 5 Ma, with the highest speciation rates in Panama and Costa Rica. These results alter our understanding of the geographic origin of orchids, previously proposed as Australian, and pinpoint Central America as a region of recent, explosive speciation.


Assuntos
Clima , Orchidaceae , Austrália , Filogenia , Filogeografia , Orchidaceae/genética
7.
Syst Biol ; 72(4): 753-766, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37098166

RESUMO

Species delimitation in the genomic era has focused predominantly on the application of multiple analytical methodologies to a single massive parallel sequencing (MPS) data set, rather than leveraging the unique but complementary insights provided by different classes of MPS data. In this study, we demonstrate how the use of two independent MPS data sets, a sequence capture data set and a single-nucleotide polymorphism (SNP) data set generated via genotyping-by-sequencing, enables the resolution of species in three complexes belonging to the grass genus Ehrharta, whose strong population structure and subtle morphological variation limit the effectiveness of traditional species delimitation approaches. Sequence capture data are used to construct a comprehensive phylogenetic tree of Ehrharta and to resolve population relationships within the focal clades, while SNP data are used to detect patterns of gene pool sharing across populations, using a novel approach that visualizes multiple values of K. Given that the two genomic data sets are independent, the strong congruence in the clusters they resolve provides powerful ratification of species boundaries in all three complexes studied. Our approach is also able to resolve a number of single-population species and a probable hybrid species, both of which would be difficult to detect and characterize using a single MPS data set. Overall, the data reveal the existence of 11 and five species in the E. setacea and E. rehmannii complexes, with the E. ramosa complex requiring further sampling before species limits are finalized. Despite phenotypic differentiation being generally subtle, true crypsis is limited to just a few species pairs and triplets. We conclude that, in the absence of strong morphological differentiation, the use of multiple, independent genomic data sets is necessary in order to provide the cross-data set corroboration that is foundational to an integrative taxonomic approach. [Species delimitation; genotyping-by-sequencing; population structure; integrative taxonomy; cryptic species; Ehrharta (Poaceae).].


Assuntos
Genoma , Genômica , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Variação Biológica da População , Especificidade da Espécie
8.
Ann Bot ; 134(1): 85-100, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38527418

RESUMO

BACKGROUND AND AIMS: The geographical origin and evolutionary mechanisms underpinning the rich and distinctive New Caledonian flora remain poorly understood. This is attributable to the complex geological past of the island and to the scarcity of well-resolved species-level phylogenies. Here, we infer phylogenetic relationships and divergence times of New Caledonian palms, which comprise 40 species. We use this framework to elucidate the biogeography of New Caledonian palm lineages and to explore how extant species might have formed. METHODS: A phylogenetic tree including 37 New Caledonian palm species and 77 relatives from tribe Areceae was inferred from 151 nuclear genes obtained by targeted sequencing. Fossil-calibrated divergence times were estimated and ancestral ranges inferred. Ancestral and extant ecological preferences in terms of elevation, precipitation and substrate were compared between New Caledonian sister species to explore their possible roles as drivers of speciation. KEY RESULTS: New Caledonian palms form four well-supported clades, inside which relationships are well resolved. Our results support the current classification but suggest that Veillonia and Campecarpus should be resurrected and fail to clarify whether Rhopalostylidinae is sister to or nested in Basseliniinae. New Caledonian palm lineages are derived from New Guinean and Australian ancestors, which reached the island through at least three independent dispersal events between the Eocene and Miocene. Palms then dispersed out of New Caledonia at least five times, mainly towards Pacific islands. Geographical and ecological transitions associated with speciation events differed across time and genera. Substrate transitions were more frequently associated with older events than with younger ones. CONCLUSIONS: Neighbouring areas and a mosaic of local habitats shaped the palm flora of New Caledonia, and the island played a significant role in generating palm diversity across the Pacific region. This new spatio-temporal framework will enable population-level ecological and genetic studies to unpick the mechanisms underpinning New Caledonian palm endemism.


Assuntos
Arecaceae , Filogenia , Filogeografia , Arecaceae/genética , Arecaceae/classificação , Arecaceae/fisiologia , Nova Caledônia
9.
Am J Bot ; : e16399, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39206557

RESUMO

PREMISE: Cleomaceae is an important model clade for studies of evolutionary processes including genome evolution, floral form diversification, and photosynthetic pathway evolution. Diversification and divergence patterns in Cleomaceae remain tangled as research has been restricted by its worldwide distribution, limited genetic sampling and species coverage, and a lack of definitive fossil calibration points. METHODS: We used target sequence capture and the Angiosperms353 probe set to perform a phylogenetic study of Cleomaceae. We estimated divergence times and biogeographic analyses to explore the origin and diversification of the family. Seed morphology across extant taxa was documented with multifocal image-stacking techniques and morphological characters were extracted, analyzed, and compared to fossil records. RESULTS: We recovered a well-supported and resolved phylogenetic tree of Cleomaceae generic relationships that includes 236 (~86%) species. We identified 11 principal clades and confidently placed Cleomella as sister to the rest of the family. Our analyses suggested that Cleomaceae and Brassicaceae diverged ~56 mya, and Cleomaceae began to diversify ~53 mya in the Palearctic and Africa. Multiple transatlantic disjunct distributions were identified. Seeds were imaged from 218 (~80%) species in the family and compared to all known fossil species. CONCLUSIONS: Our results represent the most comprehensive phylogenetic study of Cleomaceae to date. We identified transatlantic disjunctions and proposed explanations for these patterns, most likely either long-distance dispersals or contractions in latitudinal distributions caused by climate change over geological timescales. We found that seed morphology varied considerably but mostly mirrored generic relationships.

10.
New Phytol ; 240(4): 1636-1646, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37496281

RESUMO

Regions harbouring high unique phylogenetic diversity (PD) are priority targets for conservation. Here, we analyse the global distribution of plant PD, which remains poorly understood despite plants being the foundation of most terrestrial habitats and key to human livelihoods. Capitalising on a recently completed, comprehensive global checklist of vascular plants, we identify hotspots of unique plant PD and test three hypotheses: (1) PD is more evenly distributed than species diversity; (2) areas of highest PD (often called 'hotspots') do not maximise cumulative PD; and (3) many biomes are needed to maximise cumulative PD. Our results support all three hypotheses: more than twice as many regions are required to cover 50% of global plant PD compared to 50% of species; regions that maximise cumulative PD substantially differ from the regions with outstanding individual PD; and while (sub-)tropical moist forest regions dominate across PD hotspots, other forest types and open biomes are also essential. Safeguarding PD in the Anthropocene (including the protection of some comparatively species-poor areas) is a global, increasingly recognised responsibility. Having highlighted countries with outstanding unique plant PD, further analyses are now required to fully understand the global distribution of plant PD and associated conservation imperatives across spatial scales.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Humanos , Filogenia , Conservação dos Recursos Naturais/métodos , Plantas , Ecossistema
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa