Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 38(17): 5275-5285, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35142528

RESUMO

Combining stimuli-responsive properties of gels with adhesive properties of mussels is highly interesting for a large field of applications as, e.g., in life science. Therefore, the present paper focuses on the copolymerization of poly(N-isopropylacrylamide) (PNIPAM) microgels with dopamine methacrylamide (DMA). A detailed understanding of reaction kinetics is crucial to figure out an optimized synthesis strategy for tailoring microgels with adhesive properties. The present study addresses the influence of relevant synthesis parameters as the injection time of DMA during the microgel synthesis and the overall reaction time of the microgel. Reaction kinetics were studied by mass spectrometry of time samples taken during the microgel synthesis. This allowed us to determine the monomer consumption of NIPAM, the cross-linker N,N'-methylenebisacrylamide (BIS), and DMA. A second-order reaction kinetics was found for DMA incorporation. The amount of DMA incorporated in the resulting microgel was successfully determined by a combination of UV-vis and NMR spectroscopy to level off limitations of both methods. The dependence of the hydrodynamic radius on temperature was determined by DLS measurements for the microgels. While an early injection of DMA stops the PNIPAM polymerization due to scavenging, it greatly enhances the reaction speed of DMA. The faster reaction of DMA and the incomplete NIPAM and BIS conversion also compensate for shorter reaction times with respect to the incorporated amount of DMA. On the contrary, a later injection of DMA leads to a full NIPAM monomer and BIS cross-linker consumption. An overall reaction time of 60 min ensures the DMA incorporation. Longer reaction times lead to clumping. First adhesion tests show an increased adhesion of P(NIPAM-co-DMA) microgels compared to pure PNIPAM microgels, when mechanical stress is applied.


Assuntos
Microgéis , Acrilamidas , Resinas Acrílicas , Adesivos , Dopamina , Cinética , Polimerização
2.
ACS Appl Mater Interfaces ; 16(1): 1521-1534, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38146181

RESUMO

The combination of the catechol-containing comonomer dopamine methacrylamide (DMA) with stimuli-responsive poly(N-isopropylacrylamide) (PNIPAM) microgels bears a huge potential in research and for applications due to the versatile properties of catechols. This research gives the first detailed insights into the influence of DMA on the swelling of PNIPAM microgels and their nanomechanical properties. Dynamic light scattering measurements showed that DMA decreases the volume phase transition temperature and completion temperature due to its higher hydrophobicity when compared to NIPAM, while sharpening the transition. The cross-linking ability of DMA decreases the swelling ratios and mesh sizes of the microgels. Microgels adsorbed at the solid surface are characterized by atomic force microscopy─as the DMA content increases, microgels protrude more from the surface. Force spectroscopy measurements below and above the volume phase transition temperature display a stiffening of the microgels with the incorporation of DMA and upon heating across its entire cross section as evidenced by an increase in the E modulus. This confirms the cross-linking ability of DMA. The affine network factor ß, derived from the Flory-Rehner theory, is linearly correlated with the E moduli of both pure PNIPAM and P(NIPAM-co-DMA) microgels. However, large DMA amounts hinder the microgel shrinking while maintaining mechanical stiffness, possibly due to catechol interactions within the microgel network.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa