Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Cereb Cortex ; 33(9): 5163-5180, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36288926

RESUMO

Our everyday life summons numerous novel sensorimotor experiences, to which our brain needs to adapt in order to function properly. However, tracking plasticity of naturalistic behavior and associated brain modulations is challenging. Here, we tackled this question implementing a prism adaptation-like training in virtual reality (VRPA) in combination with functional neuroimaging. Three groups of healthy participants (N = 45) underwent VRPA (with a shift either to the left/right side, or with no shift), and performed functional magnetic resonance imaging (fMRI) sessions before and after training. To capture modulations in free-flowing, task-free brain activity, the fMRI sessions included resting-state and free-viewing of naturalistic videos. We found significant decreases in spontaneous functional connectivity between attentional and default mode (DMN)/fronto-parietal networks, only for the adaptation groups, more pronouncedly in the hemisphere contralateral to the induced shift. In addition, VRPA was found to bias visual responses to naturalistic videos: Following rightward adaptation, we found upregulation of visual response in an area in the parieto-occipital sulcus (POS) only in the right hemisphere. Notably, the extent of POS upregulation correlated with the size of the VRPA-induced after-effect measured in behavioral tests. This study demonstrates that a brief VRPA exposure can change large-scale cortical connectivity and correspondingly bias visual responses to naturalistic sensory inputs.


Assuntos
Encéfalo , Córtex Cerebral , Humanos , Encéfalo/fisiologia , Córtex Cerebral/fisiologia , Mapeamento Encefálico , Imageamento por Ressonância Magnética/métodos , Adaptação Fisiológica/fisiologia
2.
Dev Sci ; 26(6): e13389, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36942648

RESUMO

Fostering creative minds has always been a premise to ensure adaptation to new challenges of human civilization. While some alternative educational settings (i.e., Montessori) were shown to nurture creative skills, it is unknown how they impact underlying brain mechanisms across the school years. This study assessed creative thinking and resting-state functional connectivity via fMRI in 75 children (4-18 y.o.) enrolled either in Montessori or traditional schools. We found that pedagogy significantly influenced creative performance and underlying brain networks. Replicating past work, Montessori-schooled children showed higher scores on creative thinking tests. Using static functional connectivity analysis, we found that Montessori-schooled children showed decreased within-network functional connectivity of the salience network. Moreover, using dynamic functional connectivity, we found that traditionally-schooled children spent more time in a brain state characterized by high intra-default mode network connectivity. These findings suggest that pedagogy may influence brain networks relevant to creative thinking-particularly the default and salience networks. Further research is needed, like a longitudinal study, to verify these results given the implications for educational practitioners. A video abstract of this article can be viewed at https://www.youtube.com/watch?v=xWV_5o8wB5g . RESEARCH HIGHLIGHTS: Most executive jobs are prospected to be obsolete within several decades, so creative skills are seen as essential for the near future. School experience has been shown to play a role in creativity development, however, the underlying brain mechanisms remained under-investigated yet. Seventy-five 4-18 years-old children, from Montessori or traditional schools, performed a creativity task at the behavioral level, and a 6-min resting-state MR scan. We uniquely report preliminary evidence for the impact of pedagogy on functional brain networks.


Assuntos
Mapeamento Encefálico , Criatividade , Criança , Humanos , Encéfalo , Mapeamento Encefálico/métodos , Estudos Longitudinais , Imageamento por Ressonância Magnética/métodos , Instituições Acadêmicas , Pré-Escolar , Adolescente
3.
J Neurosci ; 34(35): 11803-11, 2014 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-25164675

RESUMO

Prismatic adaptation has been shown to induce a realignment of visuoproprioceptive representations and to involve parietocerebellar networks. We have investigated in humans how far other types of functions known to involve the parietal cortex are influenced by a brief exposure to prismatic adaptation. Normal subjects underwent an fMRI evaluation before and after a brief session of prismatic adaptation using rightward deviating prisms for one group or after an equivalent session using plain glasses for the other group. Activation patterns to three tasks were analyzed: (1) visual detection; (2) visuospatial short-term memory; and (3) verbal short-term memory. The prismatic adaptation-related changes were found bilaterally in the inferior parietal lobule when prisms, but not plain glasses, were used. This effect was driven by selective changes during the visual detection task: an increase in neural activity was induced on the left and a decrease on the right parietal side after prismatic adaptation. Comparison of activation patterns after prismatic adaptation on the visual detection task demonstrated a significant increase of the ipsilateral field representation in the left inferior parietal lobule and a significant decrease in the right inferior parietal lobule. In conclusion, a brief exposure to prismatic adaptation modulates differently left and right parietal activation during visual detection but not during short-term memory. Furthermore, the visuospatial representation within the inferior parietal lobule changes, with a decrease of the ipsilateral hemifield representation on the right and increase on the left side, suggesting thus a left hemispheric dominance.


Assuntos
Adaptação Fisiológica/fisiologia , Lobo Parietal/fisiologia , Percepção Visual/fisiologia , Adulto , Mapeamento Encefálico , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
4.
PLoS Comput Biol ; 9(1): e1002895, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23401673

RESUMO

In an uncertain environment, probabilities are key to predicting future events and making adaptive choices. However, little is known about how humans learn such probabilities and where and how they are encoded in the brain, especially when they concern more than two outcomes. During functional magnetic resonance imaging (fMRI), young adults learned the probabilities of uncertain stimuli through repetitive sampling. Stimuli represented payoffs and participants had to predict their occurrence to maximize their earnings. Choices indicated loss and risk aversion but unbiased estimation of probabilities. BOLD response in medial prefrontal cortex and angular gyri increased linearly with the probability of the currently observed stimulus, untainted by its value. Connectivity analyses during rest and task revealed that these regions belonged to the default mode network. The activation of past outcomes in memory is evoked as a possible mechanism to explain the engagement of the default mode network in probability learning. A BOLD response relating to value was detected only at decision time, mainly in striatum. It is concluded that activity in inferior parietal and medial prefrontal cortex reflects the amount of evidence accumulated in favor of competing and uncertain outcomes.


Assuntos
Lobo Frontal/fisiologia , Lobo Parietal/fisiologia , Probabilidade , Humanos , Aprendizagem , Imageamento por Ressonância Magnética
5.
Neurol Sci ; 35 Suppl 1: 215-24, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24867869

RESUMO

In humans, spatial integration develops slowly, continuing through childhood into adolescence. On the assumption that this protracted course depends on the formation of networks with slowly developing top-down connections, we compared effective connectivity in the visual cortex between 13 children (age 7-13) and 14 adults (age 21-42) using a passive perceptual task. The subjects were scanned while viewing bilateral gratings, which either obeyed Gestalt grouping rules [colinear gratings (CG)] or violated them [non-colinear gratings (NG)]. The regions of interest for dynamic causal modeling were determined from activations in functional MRI contrasts stimuli > background and CG > NG. They were symmetrically located in V1 and V3v areas of both hemispheres. We studied a common model, which contained reciprocal intrinsic and modulatory connections between these regions. An analysis of effective connectivity showed that top-down modulatory effects generated at an extrastriate level and interhemispheric modulatory effects between primary visual areas (all inhibitory) are significantly weaker in children than in adults, suggesting that the formation of feedback and interhemispheric effective connections continues into adolescence. These results are consistent with a model in which spatial integration at an extrastriate level results in top-down messages to the primary visual areas, where they are supplemented by lateral (interhemispheric) messages, making perceptual encoding more efficient and less redundant. Abnormal formation of top-down inhibitory connections can lead to the reduction of habituation observed in migraine patients.


Assuntos
Transtornos de Enxaqueca/fisiopatologia , Modelos Neurológicos , Percepção Espacial/fisiologia , Córtex Visual/crescimento & desenvolvimento , Córtex Visual/fisiologia , Adolescente , Adulto , Criança , Retroalimentação Fisiológica/fisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/crescimento & desenvolvimento , Vias Neurais/fisiologia , Estimulação Luminosa , Processamento de Sinais Assistido por Computador , Percepção Visual/fisiologia , Adulto Jovem
6.
NPJ Sci Learn ; 9(1): 45, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987286

RESUMO

Across development, experience has a strong impact on the way we think and adapt. School experience affects academic and social-emotional outcomes, yet whether differences in pedagogical experience modulate underlying brain network development is still unknown. In this study, we compared the brain network dynamics of students with different pedagogical backgrounds. Specifically, we characterized the diversity and stability of brain activity at rest by combining both resting-state fMRI and diffusion-weighted structural imaging data of 87 4-18 years old students experiencing either the Montessori pedagogy (i.e., student-led, trial-and-error pedagogy) or the traditional pedagogy (i.e., teacher-led, test-based pedagogy). Our results revealed spatiotemporal brain dynamics differences between students as a function of schooling experience at the whole-brain level. Students from Montessori schools showed overall higher functional integration (higher system diversity) and neural stability (lower spatiotemporal diversity) compared to traditionally schooled students. Higher integration was explained mainly through the cerebellar (CBL) functional network. In contrast, higher temporal stability was observed in the ventral attention, dorsal attention, somatomotor, frontoparietal, and CBL functional networks. This study suggests a form of experience-dependent dynamic functional connectivity plasticity, in learning-related networks.

7.
Sci Data ; 11(1): 429, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664431

RESUMO

While research has unveiled and quantified brain markers of abnormal neurodevelopment, clinicians still work with qualitative metrics for MRI brain investigation. The purpose of the current article is to bridge the knowledge gap between case-control cohort studies and individual patient care. Here, we provide a unique dataset of seventy-three 3-to-17 years-old healthy subjects acquired with a 6-minute MRI protocol encompassing T1 and T2 relaxation quantitative sequence that can be readily implemented in the clinical setting; MP2RAGE for T1 mapping and the prototype sequence GRAPPATINI for T2 mapping. White matter and grey matter volumes were automatically quantified. We further provide normative developmental curves based on these two imaging sequences; T1, T2 and volume normative ranges with respect to age were computed, for each ROI of a pediatric brain atlas. This open-source dataset provides normative values allowing to position individual patients acquired with the same protocol on the brain maturation curve and as such provides potentially useful quantitative biomarkers facilitating precise and personalized care.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/crescimento & desenvolvimento , Criança , Pré-Escolar , Adolescente , Masculino , Feminino , Substância Branca/diagnóstico por imagem , Substância Branca/crescimento & desenvolvimento , Substância Cinzenta/diagnóstico por imagem
8.
Transl Psychiatry ; 14(1): 95, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355713

RESUMO

Reciprocal Copy Number Variants (CNVs) at the 16p11.2 locus confer high risk for autism spectrum disorder (ASD) and other neurodevelopmental disorders (NDDs). Morphometric MRI studies have revealed large and pervasive volumetric alterations in carriers of a 16p11.2 deletion. However, the specific neuroanatomical mechanisms underlying such alterations, as well as their developmental trajectory, are still poorly understood. Here we explored differences in microstructural brain connectivity between 24 children carrying a 16p11.2 deletion and 66 typically developing (TD) children between 2 and 8 years of age. We found a large pervasive increase of intra-axonal volume widespread over a high number of white matter tracts. Such microstructural alterations in 16p11.2 deletion children were already present at an early age, and led to significant changes in the global efficiency and integration of brain networks mainly associated to language, motricity and socio-emotional behavior, although the widespread pattern made it unlikely to represent direct functional correlates. Our results shed light on the neuroanatomical basis of the previously reported increase of white matter volume, and align well with analogous evidence of altered axonal diameter and synaptic function in 16p11.2 mice models. We provide evidence of a prevalent mechanistic deviation from typical maturation of brain structural connectivity associated with a specific biological risk to develop ASD. Future work is warranted to determine how this deviation contributes to the emergence of symptoms observed in young children diagnosed with ASD and other NDDs.


Assuntos
Transtorno do Espectro Autista , Substância Branca , Criança , Humanos , Animais , Camundongos , Pré-Escolar , Deleção Cromossômica , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/genética , Encéfalo/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Imageamento por Ressonância Magnética , Cromossomos Humanos Par 16/genética , Variações do Número de Cópias de DNA
9.
Anal Bioanal Chem ; 405(30): 9791-803, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24202191

RESUMO

A cross-over controlled administration study of smoked cannabis was carried out on occasional and heavy smokers. The participants smoked a joint (11% Δ9-tetrahydrocannabinol (THC)) or a matching placebo on two different occasions. Whole blood (WB) and oral fluid (OF) samples were collected before and up to 3.5 h after smoking the joints. Pharmacokinetic analyses were obtained from these data. Questionnaires assessing the subjective effects were administered to the subjects during each session before and after the smoking time period. THC, 11-hydroxy-THC (11-OH-THC) and 11-nor-9-carboxy-THC (THCCOOH) were analyzed in the blood by gas chromatography or liquid chromatography (LC)-tandem mass spectrometry (MS/MS). The determination of THC, THCCOOH, cannabinol (CBN), and Δ9-tetrahydrocannabinolic acid A (THC-A) was carried out on OF only using LC-MS/MS. In line with the widely accepted assumption that cannabis smoking results in a strong contamination of the oral cavity, we found that THC, and also THC-A, shows a sharp, high concentration peak just after smoking, with a rapid decrease in these levels within 3 h. No obvious differences were found between both groups concerning THC median maximum concentrations measured either in blood or in OF; these levels were equal to 1,338 and 1,041 µg/L in OF and to 82 and 94 µg/L in WB for occasional and heavy smokers, respectively. The initial WB THCCOOH concentration was much higher in regular smokers than in occasional users. Compared with the occasional smokers, the sensation of confusion felt by the regular smokers was much less while the feeling of intoxication remained almost unchanged.


Assuntos
Cromatografia Líquida/métodos , Dronabinol/sangue , Fumar Maconha , Saliva/química , Detecção do Abuso de Substâncias/métodos , Adolescente , Adulto , Estudos Cross-Over , Dronabinol/metabolismo , Dronabinol/farmacocinética , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Masculino , Espectrometria de Massas em Tandem , Fatores de Tempo , Distribuição Tecidual , Adulto Jovem
10.
Children (Basel) ; 10(12)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38136116

RESUMO

Although adults and children differ in self-vs.-other perception, a developmental perspective on this discriminative ability at the brain level is missing. This study examined neural activation for self-vs.-other in a sample of 39 participants spanning four different age groups, from 4-year-olds to adults. Self-related stimuli elicited higher neural activity within two brain regions related to self-referential thinking, empathy, and social cognition processes. Second, stimuli related to 'others' (i.e., unknown peer) elicited activation within nine additional brain regions. These regions are associated with multisensory processing, somatosensory skills, language, complex visual stimuli, self-awareness, empathy, theory of mind, and social recognition. Overall, activation maps were gradually increasing with age. However, patterns of activity were non-linear within the medial cingulate cortex for 'self' stimuli and within the left middle temporal gyrus for 'other' stimuli in 7-10-year-old participants. In both cases, there were no self-vs.-other differences. It suggests a critical period where the perception of self and others are similarly processed. Furthermore, 11-19-year-old participants showed no differences between others and self within the left inferior orbital gyrus, suggesting less distinction between self and others in social learning. Understanding the neural bases of self-vs.-other discrimination during development can offer valuable insights into how social contexts can influence learning processes during development, such as when to introduce peer-to-peer teaching or group learning.

11.
bioRxiv ; 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37425913

RESUMO

Functional magnetic resonance imaging (fMRI) is a methodological cornerstone of neuroscience. Most studies measure blood-oxygen-level-dependent (BOLD) signal using echo-planar imaging (EPI), Cartesian sampling, and image reconstruction with a one-to-one correspondence between the number of acquired volumes and reconstructed images. However, EPI schemes are subject to trade-offs between spatial and temporal resolutions. We overcome these limitations by measuring BOLD with a gradient recalled echo (GRE) with 3D radial-spiral phyllotaxis trajectory at a high sampling rate (28.24ms) on standard 3T field-strength. The framework enables the reconstruction of 3D signal time courses with whole-brain coverage at simultaneously higher spatial (1mm 3 ) and temporal (up to 250ms) resolutions, as compared to optimized EPI schemes. Additionally, artifacts are corrected before image reconstruction; the desired temporal resolution is chosen after scanning and without assumptions on the shape of the hemodynamic response. By showing activation in the calcarine sulcus of 20 participants performing an ON-OFF visual paradigm, we demonstrate the reliability of our method for cognitive neuroscience research.

12.
Cortex ; 157: 30-52, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36272330

RESUMO

In humans, the nature of sensory input influences body-related mental processing. For instance, behavioral differences (e.g., response time) can be found between mental spatial transformations (e.g., mental rotation) of viewed and touched body parts. It can thus be hypothesized that distinct brain activation patterns are associated with such sensory-dependent body-related mental processing. However, direct evidence that the neural correlates of body-related mental processing can be modulated by the nature of the sensory stimuli is still missing. We thus analyzed event-related functional magnetic resonance imaging (fMRI) data from thirty-one healthy participants performing mental rotation of visually- (images) and haptically-presented (plastic) hands. We also dissociated the neural activity related to rotation or task-related performance using models that either regressed out or included the variance associated with response time. Haptically-mediated mental rotation recruited mostly the sensorimotor brain network. Visually-mediated mental rotation led to parieto-occipital activations. In addition, faster mental rotation was associated with sensorimotor activity, while slower mental rotation was associated with parieto-occipital activations. The fMRI results indicated that changing the type of sensory inputs modulates the neural correlates of body-related mental processing. These findings suggest that distinct sensorimotor brain dynamics can be exploited to execute similar tasks depending on the available sensory input. The present study can contribute to a better evaluation of body-related mental processing in experimental and clinical settings.


Assuntos
Encéfalo , Processos Mentais , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Tempo de Reação/fisiologia , Mapeamento Encefálico , Mãos/fisiologia , Imageamento por Ressonância Magnética
13.
Nat Med ; 28(2): 260-271, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35132264

RESUMO

Epidural electrical stimulation (EES) targeting the dorsal roots of lumbosacral segments restores walking in people with spinal cord injury (SCI). However, EES is delivered with multielectrode paddle leads that were originally designed to target the dorsal column of the spinal cord. Here, we hypothesized that an arrangement of electrodes targeting the ensemble of dorsal roots involved in leg and trunk movements would result in superior efficacy, restoring more diverse motor activities after the most severe SCI. To test this hypothesis, we established a computational framework that informed the optimal arrangement of electrodes on a new paddle lead and guided its neurosurgical positioning. We also developed software supporting the rapid configuration of activity-specific stimulation programs that reproduced the natural activation of motor neurons underlying each activity. We tested these neurotechnologies in three individuals with complete sensorimotor paralysis as part of an ongoing clinical trial ( www.clinicaltrials.gov identifier NCT02936453). Within a single day, activity-specific stimulation programs enabled these three individuals to stand, walk, cycle, swim and control trunk movements. Neurorehabilitation mediated sufficient improvement to restore these activities in community settings, opening a realistic path to support everyday mobility with EES in people with SCI.


Assuntos
Traumatismos da Medula Espinal , Estimulação da Medula Espinal , Humanos , Perna (Membro) , Paralisia/reabilitação , Medula Espinal/fisiologia , Traumatismos da Medula Espinal/reabilitação , Caminhada/fisiologia
14.
J Cogn Neurosci ; 23(9): 2363-75, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20946055

RESUMO

Real-world objects are often endowed with features that violate Gestalt principles. In our experiment, we examined the neural correlates of binding under conflict conditions in terms of the binding-by-synchronization hypothesis. We presented an ambiguous stimulus ("diamond illusion") to 12 observers. The display consisted of four oblique gratings drifting within circular apertures. Its interpretation fluctuates between bound ("diamond") and unbound (component gratings) percepts. To model a situation in which Gestalt-driven analysis contradicts the perceptually explicit bound interpretation, we modified the original diamond (OD) stimulus by speeding up one grating. Using OD and modified diamond (MD) stimuli, we managed to dissociate the neural correlates of Gestalt-related (OD vs. MD) and perception-related (bound vs. unbound) factors. Their interaction was expected to reveal the neural networks synchronized specifically in the conflict situation. The synchronization topography of EEG was analyzed with the multivariate S-estimator technique. We found that good Gestalt (OD vs. MD) was associated with a higher posterior synchronization in the beta-gamma band. The effect of perception manifested itself as reciprocal modulations over the posterior and anterior regions (theta/beta-gamma bands). Specifically, higher posterior and lower anterior synchronization supported the bound percept, and the opposite was true for the unbound percept. The interaction showed that binding under challenging perceptual conditions is sustained by enhanced parietal synchronization. We argue that this distributed pattern of synchronization relates to the processes of multistage integration ranging from early grouping operations in the visual areas to maintaining representations in the frontal networks of sensory memory.


Assuntos
Mapeamento Encefálico , Encéfalo/fisiologia , Conflito Psicológico , Sincronização Cortical/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Adolescente , Adulto , Análise de Variância , Eletroencefalografia , Feminino , Humanos , Masculino , Análise Multivariada , Estimulação Luminosa/métodos , Tempo de Reação/fisiologia , Adulto Jovem
15.
Neuroimage ; 57(3): 1131-9, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21616155

RESUMO

Changes of functional connectivity in prodromal and early Alzheimer's disease can arise from compensatory and/or pathological processes. We hypothesized that i) there is impairment of effective inhibition associated with early Alzheimer's disease that may lead to ii) a paradoxical increase of functional connectivity. To this end we analyzed effective connectivity in 14 patients and 16 matched controls using dynamic causal modeling of functional MRI time series recorded during a visual inter-hemispheric integration task. By contrasting co-linear with non co-linear bilateral gratings, we estimated inhibitory top-down effects within the visual areas. The anatomical areas constituting the functional network of interest were identified with categorical functional MRI contrasts (Stimuli>Baseline and Co-linear gratings>Non co-linear gratings), which implicated V1 and V3v in both hemispheres. A model with reciprocal excitatory intrinsic connections linking these four regions and modulatory inhibitory effects exerted by V3v on V1 optimally explained the functional MRI time series in both subject groups. However, Alzheimer's disease was associated with significantly weakened intrinsic and modulatory connections. Top-down inhibitory effects, previously detected as relative deactivations of V1 in young adults, were observed neither in our aged controls nor in patients. We conclude that effective inhibition weakens with age and more so in early Alzheimer's disease.


Assuntos
Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Mapeamento Encefálico , Encéfalo/patologia , Encéfalo/fisiopatologia , Idoso , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade
16.
Fluids Barriers CNS ; 18(1): 12, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33736664

RESUMO

BACKGROUND: Phase contrast magnetic resonance imaging, PC MRI, is a valuable tool allowing for non-invasive quantification of CSF dynamics, but has lacked adoption in clinical practice for Chiari malformation diagnostics. To improve these diagnostic practices, a better understanding of PC MRI based measurement agreement, repeatability, and reproducibility of CSF dynamics is needed. METHODS: An anatomically realistic in vitro subject specific model of a Chiari malformation patient was scanned three times at five different scanning centers using 2D PC MRI and 4D Flow techniques to quantify intra-scanner repeatability, inter-scanner reproducibility, and agreement between imaging modalities. Peak systolic CSF velocities were measured at nine axial planes using 2D PC MRI, which were then compared to 4D Flow peak systolic velocity measurements extracted at those exact axial positions along the model. RESULTS: Comparison of measurement results showed good overall agreement of CSF velocity detection between 2D PC MRI and 4D Flow (p = 0.86), fair intra-scanner repeatability (confidence intervals ± 1.5 cm/s), and poor inter-scanner reproducibility. On average, 4D Flow measurements had a larger variability than 2D PC MRI measurements (standard deviations 1.83 and 1.04 cm/s, respectively). CONCLUSION: Agreement, repeatability, and reproducibility of 2D PC MRI and 4D Flow detection of peak CSF velocities was quantified using a patient-specific in vitro model of Chiari malformation. In combination, the greatest factor leading to measurement inconsistency was determined to be a lack of reproducibility between different MRI centers. Overall, these findings may help lead to better understanding for application of 2D PC MRI and 4D Flow techniques as diagnostic tools for CSF dynamics quantification in Chiari malformation and related diseases.


Assuntos
Malformação de Arnold-Chiari/líquido cefalorraquidiano , Malformação de Arnold-Chiari/diagnóstico por imagem , Líquido Cefalorraquidiano/fisiologia , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/normas , Pré-Escolar , Humanos , Hidrodinâmica , Metanálise como Assunto , Modelos Anatômicos , Reprodutibilidade dos Testes , Literatura de Revisão como Assunto
17.
Brain Topogr ; 23(3): 321-32, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20333460

RESUMO

The processing of human bodies is important in social life and for the recognition of another person's actions, moods, and intentions. Recent neuroimaging studies on mental imagery of human body parts suggest that the left hemisphere is dominant in body processing. However, studies on mental imagery of full human bodies reported stronger right hemisphere or bilateral activations. Here, we measured functional magnetic resonance imaging during mental imagery of bilateral partial (upper) and full bodies. Results show that, independently of whether a full or upper body is processed, the right hemisphere (temporo-parietal cortex, anterior parietal cortex, premotor cortex, bilateral superior parietal cortex) is mainly involved in mental imagery of full or partial human bodies. However, distinct activations were found in extrastriate cortex for partial bodies (right fusiform face area) and full bodies (left extrastriate body area). We propose that a common brain network, mainly on the right side, is involved in the mental imagery of human bodies, while two distinct brain areas in extrastriate cortex code for mental imagery of full and upper bodies.


Assuntos
Mapeamento Encefálico , Encéfalo/fisiologia , Lateralidade Funcional/fisiologia , Corpo Humano , Imagens, Psicoterapia , Processos Mentais/fisiologia , Adulto , Análise de Variância , Encéfalo/irrigação sanguínea , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Julgamento/fisiologia , Imageamento por Ressonância Magnética/métodos , Masculino , Oxigênio/sangue , Reconhecimento Visual de Modelos/fisiologia , Estimulação Luminosa/métodos , Tempo de Reação/fisiologia
18.
PLoS One ; 15(6): e0234382, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32584824

RESUMO

A brief session of rightward prismatic adaptation (R-PA) has been shown to alleviate neglect symptoms in patients with right hemispheric damage, very likely by switching hemispheric dominance of the ventral attentional network (VAN) from the right to the left and by changing task-related activity within the dorsal attentional network (DAN). We have investigated this very rapid change in functional organisation with a network approach by comparing resting-state connectivity before and after a brief exposure i) to R-PA (14 normal subjects; experimental condition) or ii) to plain glasses (12 normal subjects; control condition). A whole brain analysis (comprising 129 regions of interest) highlighted R-PA-induced changes within a bilateral, fronto-temporal network, which consisted of 13 nodes and 11 edges; all edges involved one of 4 frontal nodes, which were part of VAN. The analysis of network characteristics within VAN and DAN revealed a R-PA-induced decrease in connectivity strength between nodes and a decrease in local efficiency within VAN but not within DAN. These results indicate that the resting-state connectivity configuration of VAN is modulated by R-PA, possibly by decreasing its modularity.


Assuntos
Atenção/fisiologia , Encéfalo/fisiologia , Rede Nervosa/fisiologia , Adaptação Fisiológica , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Lesões Encefálicas/diagnóstico por imagem , Lesões Encefálicas/fisiopatologia , Lesões Encefálicas/terapia , Estudos de Casos e Controles , Conectoma , Óculos , Feminino , Lateralidade Funcional/fisiologia , Neuroimagem Funcional , Humanos , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Dispositivos Ópticos , Transtornos da Percepção/diagnóstico por imagem , Transtornos da Percepção/fisiopatologia , Transtornos da Percepção/terapia , Adulto Jovem
19.
NPJ Sci Learn ; 5: 11, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32699649

RESUMO

The development of error monitoring is central to learning and academic achievement. However, few studies exist on the neural correlates of children's error monitoring, and no studies have examined its susceptibility to educational influences. Pedagogical methods differ on how they teach children to learn from errors. Here, 32 students (aged 8-12 years) from high-quality Swiss traditional or Montessori schools performed a math task with feedback during fMRI. Although the groups' accuracies were similar, Montessori students skipped fewer trials, responded faster and showed more neural activity in right parietal and frontal regions involved in math processing. While traditionally-schooled students showed greater functional connectivity between the ACC, involved in error monitoring, and hippocampus following correct trials, Montessori students showed greater functional connectivity between the ACC and frontal regions following incorrect trials. The findings suggest that pedagogical experience influences the development of error monitoring and its neural correlates, with implications for neurodevelopment and education.

20.
Neuroimage ; 44(1): 145-53, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-18760369

RESUMO

Interindividual functional and structural brain variability is a major problem in group studies, in which very focal activations are expected. Architectonic studies have shown that the human primary auditory area, which is located with a great constancy on Heschl's gyrus, is surrounded by several nonprimary auditory areas with surface areas of 40-310 mm(2). The small size of the latter makes them only partially accessible to fMRI group studies, because of imprecision in realignment when using currently available registration procedures. We describe here a new method for sulcal realignment using a non-rigid local landmark-based registration and show its application to the registration of fMRI acquisitions on the supratemporal plane. After an affine global voxel-based registration, which transforms all brains into the same standard space, we propose a non-rigid local landmark-based registration method based on thin-plate splines for matching the two sulci delimiting Heschl's gyrus of a given brain to the corresponding sulci of a reference brain. We show here that, in comparison with global affine and non-rigid approaches, our method leads in group studies to i) a much more precise alignment of Heschl's gyrus; and ii) a putatively optimal superposition of functionally corresponding areas on and around Heschl's gyrus.


Assuntos
Córtex Auditivo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Interpretação de Imagem Assistida por Computador/métodos , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Cintilografia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa