Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38339189

RESUMO

Nqo15 is a subunit of respiratory complex I of the bacterium Thermus thermophilus, with strong structural similarity to human frataxin (FXN), a protein involved in the mitochondrial disease Friedreich's ataxia (FRDA). Recently, we showed that the expression of recombinant Nqo15 can ameliorate the respiratory phenotype of FRDA patients' cells, and this prompted us to further characterize both the Nqo15 solution's behavior and its potential functional overlap with FXN, using a combination of in silico and in vitro techniques. We studied the analogy of Nqo15 and FXN by performing extensive database searches based on sequence and structure. Nqo15's folding and flexibility were investigated by combining nuclear magnetic resonance (NMR), circular dichroism, and coarse-grained molecular dynamics simulations. Nqo15's iron-binding properties were studied using NMR, fluorescence, and specific assays and its desulfurase activation by biochemical assays. We found that the recombinant Nqo15 isolated from complex I is monomeric, stable, folded in solution, and highly dynamic. Nqo15 does not share the iron-binding properties of FXN or its desulfurase activation function.


Assuntos
Frataxina , Ataxia de Friedreich , Humanos , Complexo I de Transporte de Elétrons/metabolismo , Thermus thermophilus/metabolismo , Simulação de Dinâmica Molecular , Ferro/metabolismo , Proteínas de Ligação ao Ferro/metabolismo , Ataxia de Friedreich/metabolismo
2.
J Struct Biol ; 215(4): 108023, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37652396

RESUMO

Tandem Repeat Proteins (TRPs) are a class of proteins with repetitive amino acid sequences that have been studied extensively for over two decades. Different features at the level of sequence, structure, function and evolution have been attributed to them by various authors. And yet many of its salient features appear only when looking at specific subclasses of protein tandem repeats. Here, we attempt to rationalize the existing knowledge on Tandem Repeat Proteins (TRPs) by pointing out several dichotomies. The emerging picture is more nuanced than generally assumed and allows us to draw some boundaries of what is not a "proper" TRP. We conclude with an operational definition of a specific subset, which we have denominated STRPs (Structural Tandem Repeat Proteins), which separates a subclass of tandem repeats with distinctive features from several other less well-defined types of repeats. We believe that this definition will help researchers in the field to better characterize the biological meaning of this large yet largely understudied group of proteins.


Assuntos
Proteínas , Sequências de Repetição em Tandem , Proteínas/genética , Proteínas/química , Sequências de Repetição em Tandem/genética , Sequência de Aminoácidos
3.
Bioinformatics ; 38(6): 1745-1748, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-34954795

RESUMO

SUMMARY: Conformational changes in RNA native ensembles are central to fulfill many of their biological roles. Systematic knowledge of the extent and possible modulators of this conformational diversity is desirable to better understand the relationship between RNA dynamics and function. We have developed CoDNaS-RNA as the first database of conformational diversity in RNA molecules. Known RNA structures are retrieved and clustered to identify alternative conformers of each molecule. Pairwise structural comparisons between all conformers within each cluster allows to measure the variability of the molecule. Additional annotations about structural features, molecular interactions and biological function are provided. All data in CoDNaS-RNA is free to download and available as a public website that can be of interest for researchers in computational biology and other life science disciplines. AVAILABILITY AND IMPLEMENTATION: The data underlying this article are available at http://ufq.unq.edu.ar/codnasrna or https://codnas-rna.bioinformatica.org/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Biologia Computacional , RNA , Conformação Molecular , Software
4.
Bioinformatics ; 38(10): 2742-2748, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35561203

RESUMO

MOTIVATION: After the outstanding breakthrough of AlphaFold in predicting protein 3D models, new questions appeared and remain unanswered. The ensemble nature of proteins, for example, challenges the structural prediction methods because the models should represent a set of conformers instead of single structures. The evolutionary and structural features captured by effective deep learning techniques may unveil the information to generate several diverse conformations from a single sequence. Here, we address the performance of AlphaFold2 predictions obtained through ColabFold under this ensemble paradigm. RESULTS: Using a curated collection of apo-holo pairs of conformers, we found that AlphaFold2 predicts the holo form of a protein in ∼70% of the cases, being unable to reproduce the observed conformational diversity with the same error for both conformers. More importantly, we found that AlphaFold2's performance worsens with the increasing conformational diversity of the studied protein. This impairment is related to the heterogeneity in the degree of conformational diversity found between different members of the homologous family of the protein under study. Finally, we found that main-chain flexibility associated with apo-holo pairs of conformers negatively correlates with the predicted local model quality score plDDT, indicating that plDDT values in a single 3D model could be used to infer local conformational changes linked to ligand binding transitions. AVAILABILITY AND IMPLEMENTATION: Data and code used in this manuscript are publicly available at https://gitlab.com/sbgunq/publications/af2confdiv-oct2021. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Proteínas , Ligação Proteica , Conformação Proteica , Proteínas/química
5.
Nucleic Acids Res ; 49(D1): D452-D457, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33237313

RESUMO

The RepeatsDB database (URL: https://repeatsdb.org/) provides annotations and classification for protein tandem repeat structures from the Protein Data Bank (PDB). Protein tandem repeats are ubiquitous in all branches of the tree of life. The accumulation of solved repeat structures provides new possibilities for classification and detection, but also increasing the need for annotation. Here we present RepeatsDB 3.0, which addresses these challenges and presents an extended classification scheme. The major conceptual change compared to the previous version is the hierarchical classification combining top levels based solely on structural similarity (Class > Topology > Fold) with two new levels (Clan > Family) requiring sequence similarity and describing repeat motifs in collaboration with Pfam. Data growth has been addressed with improved mechanisms for browsing the classification hierarchy. A new UniProt-centric view unifies the increasingly frequent annotation of structures from identical or similar sequences. This update of RepeatsDB aligns with our commitment to develop a resource that extracts, organizes and distributes specialized information on tandem repeat protein structures.


Assuntos
Bases de Dados de Proteínas , Proteínas/química , Sequências Repetitivas de Aminoácidos , Sequências de Repetição em Tandem , Ontologia Genética , Células HEK293 , Células HeLa , Humanos , Reprodutibilidade dos Testes , Estatística como Assunto , Interface Usuário-Computador
6.
Brief Bioinform ; 20(1): 356-359, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28981583

RESUMO

Major scientific challenges that are beyond the capability of individuals need to be addressed by multi-disciplinary and multi-institutional consortia. Examples of these endeavours include the Human Genome Project, and more recently, the Structural Genomics (SG) initiative. The SG initiative pursues the expansion of structural coverage to include at least one structural representative for each protein family to derive the remaining structures using homology modelling. However, biological function is inherently connected with protein dynamics that can be studied by knowing different structures of the same protein. This ensemble of structures provides snapshots of protein conformational diversity under native conditions. Thus, sequence redundancy in the Protein Data Bank (PDB) (i.e. crystallization of the same protein under different conditions) is therefore an essential input contributing to experimentally based studies of protein dynamics and providing insights into protein function. In this work, we show that sequence redundancy, a key concept for exploring protein dynamics, is highly biased and fundamentally incomplete in the PDB. Additionally, our results show that dynamical behaviour of proteins cannot be inferred using homologous proteins. Minor to moderate changes in sequence can produce great differences in dynamical behaviour. Nonetheless, the structural and dynamical incompleteness of the PDB is apparently unrelated concepts in SG. While the first could be reversed by promoting the extension of the structural coverage, we would like to emphasize that further focused efforts will be needed to amend the incompleteness of the PDB in terms of dynamical information content, essential to fully understand protein function.


Assuntos
Bases de Dados de Proteínas/estatística & dados numéricos , Biologia Computacional/métodos , Biologia Computacional/estatística & dados numéricos , Cristalografia por Raios X , Genômica/estatística & dados numéricos , Humanos , Simulação de Dinâmica Molecular , Conformação Proteica , Proteínas/química , Proteínas/genética , Proteômica/estatística & dados numéricos , Homologia de Sequência de Aminoácidos , Homologia Estrutural de Proteína
7.
PLoS Comput Biol ; 15(2): e1006473, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30763318

RESUMO

The dynamic nature of technological developments invites us to rethink the learning spaces. In this context, science education can be enriched by the contribution of new computational resources, making the educational process more up-to-date, challenging, and attractive. Bioinformatics is a key interdisciplinary field, contributing to the understanding of biological processes that is often underrated in secondary schools. As a useful resource in learning activities, bioinformatics could help in engaging students to integrate multiple fields of knowledge (logical-mathematical, biological, computational, etc.) and generate an enriched and long-lasting learning environment. Here, we report our recent project in which high school students learned basic concepts of programming applied to solving biological problems. The students were taught the Python syntax, and they coded simple tools to answer biological questions using resources at hand. Notably, these were built mostly on the students' own smartphones, which proved to be capable, readily available, and relevant complementary tools for teaching. This project resulted in an empowering and inclusive experience that challenged differences in social background and technological accessibility.


Assuntos
Biologia Computacional/educação , Educação/métodos , Aprendizagem Baseada em Problemas/métodos , Biologia Computacional/métodos , Currículo , Humanos , Aprendizagem , Instituições Acadêmicas , Smartphone , Software , Estudantes
8.
J Comput Chem ; 39(29): 2472-2480, 2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-30298935

RESUMO

Epidermal growth factor receptor (EGFR) is a prototypical cell-surface receptor that plays a key role in the regulation of cellular signaling, proliferation and differentiation. Mutations of its kinase domain have been associated with the development of a variety of cancers and, therefore, it has been the target of drug design. Single amino acid substitutions (SASs) in this domain have been proven to alter the equilibrium of pre-existing conformer populations. Despite the advances in structural descriptions of its so-called active and inactive conformations, the associated dynamics aspects that characterize them have not been thoroughly studied yet. As the dynamic behaviors and molecular motions of proteins are important for a complete understanding of their structure-function relationships we present a novel procedure, using (or based on) normal mode analysis, to identify the collective dynamics shared among different conformers in EGFR kinase. The method allows the comparison of patterns of low-frequency vibrational modes defining representative directions of motions. Our procedure is able to emphasize the main similarities and differences between the collective dynamics of different conformers. In the case of EGFR kinase, two representative directions of motions have been found as dynamics fingerprints of the active conformers. Protein motion along both directions reveals to have a significant impact on the cavity volume of the main pocket of the active site. Otherwise, the inactive conformers exhibit a more heterogeneous distribution of collective motions. © 2018 Wiley Periodicals, Inc.


Assuntos
Simulação de Dinâmica Molecular , Receptores ErbB/química , Receptores ErbB/metabolismo , Humanos , Conformação Proteica
9.
PLoS Comput Biol ; 13(2): e1005398, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28192432

RESUMO

Protein motions are a key feature to understand biological function. Recently, a large-scale analysis of protein conformational diversity showed a positively skewed distribution with a peak at 0.5 Å C-alpha root-mean-square-deviation (RMSD). To understand this distribution in terms of structure-function relationships, we studied a well curated and large dataset of ~5,000 proteins with experimentally determined conformational diversity. We searched for global behaviour patterns studying how structure-based features change among the available conformer population for each protein. This procedure allowed us to describe the RMSD distribution in terms of three main protein classes sharing given properties. The largest of these protein subsets (~60%), which we call "rigid" (average RMSD = 0.83 Å), has no disordered regions, shows low conformational diversity, the largest tunnels and smaller and buried cavities. The two additional subsets contain disordered regions, but with differential sequence composition and behaviour. Partially disordered proteins have on average 67% of their conformers with disordered regions, average RMSD = 1.1 Å, the highest number of hinges and the longest disordered regions. In contrast, malleable proteins have on average only 25% of disordered conformers and average RMSD = 1.3 Å, flexible cavities affected in size by the presence of disordered regions and show the highest diversity of cognate ligands. Proteins in each set are mostly non-homologous to each other, share no given fold class, nor functional similarity but do share features derived from their conformer population. These shared features could represent conformational mechanisms related with biological functions.


Assuntos
Modelos Químicos , Modelos Estatísticos , Simulação de Dinâmica Molecular , Conformação Proteica , Proteínas/química , Proteínas/ultraestrutura , Relação Estrutura-Atividade
10.
Eur J Haematol ; 100(6): 529-535, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29319890

RESUMO

Hemoglobinopathies are the most common autosomal recessive disorders and are mostly inherited in a recessive manner. However, certain mutations can affect the globin chain stability, leading to dominant forms of thalassemia. The aim of this work was the molecular and structural characterization of two heterozygous in-frame deletions, leading to ß-globin variants in pediatric patients in Argentina. The HBB gene of the probands and their parents was sequenced, and other markers of globin chain imbalance were analyzed. Several structural analyses were performed, and the effect of the mutations on the globin chain stability was analyzed. In Hb JC-Paz, HBB:c.29_37delCTGCCGTTA (p.Ala10_Thr12del), detected in an Argentinean boy, one α-helix turn is expected to be lost. In Hb Tavapy, HBB:c.182_187delTGAAGG (p.Val60_Lys61del), the deleted residues are close to distal histidine (His63) in the heme pocket. Both mutations are predicted to have a destabilizing effect. The development of computational structural models and bioinformatics algorithms is expected to become a useful tool to understand the impact of the mutations leading to dominant thalassemia.


Assuntos
Substituição de Aminoácidos , Hemoglobinas Anormais/genética , Fases de Leitura , Deleção de Sequência , Globinas beta/genética , Criança , Pré-Escolar , Análise Mutacional de DNA , Índices de Eritrócitos , Feminino , Hemoglobinopatias/sangue , Hemoglobinopatias/diagnóstico , Hemoglobinopatias/genética , Hemoglobinopatias/terapia , Hemoglobinas Anormais/química , Humanos , Masculino , Modelos Moleculares , Conformação Proteica , Dobramento de Proteína , Globinas beta/química
11.
Ann Hum Genet ; 79(6): 385-93, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26420346

RESUMO

Somatic sequence variants in the epidermal growth factor receptor (EGFR) kinase domain are associated with sensitivity to tyrosine kinase inhibitors (TKIs) in patients with nonsmall cell lung cancer (NSCLC). Patients exhibiting sequence variants in this domain that produce kinase activity enhancement, are more likely to benefit from TKIs than patients with EGFR wild-type disease. Although most NSCLC EGFR-related alleles are concentrated in a few positions, established protocols recommend sequencing EGFR exons 18-21. In this study, 21 novel somatic variants belonging to such exons in adult Argentinean patients affected with NSCLC are reported. Of these, 18 were single amino acid substitutions (SASs), occurring alone or in combination with another genetic alteration (complex cases), one was a short deletion, one was a short deletion-short insertion combination, and one was a duplication. New variants and different combinations of previously reported variants were also found. Moreover, two of the reported SASs occurred in previously unreported positions of the EGFR kinase domain. In order to characterize the new sequence variants, physicochemical, sequence and conformational analyses were also performed. A better understanding of sequence variants in NSCLC may facilitate the most appropriate treatment choice for this complex disease.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Receptores ErbB/genética , Substituição de Aminoácidos , Argentina , Éxons , Feminino , Humanos , Mutação INDEL , Masculino , Estrutura Terciária de Proteína , Deleção de Sequência
12.
Mol Biol Evol ; 30(1): 79-87, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22396525

RESUMO

It is well established that the conservation of protein structure during evolution constrains sequence divergence. The conservation of certain physicochemical environments to preserve protein folds and then the biological function originates a site-specific structurally constrained substitution pattern. However, protein native structure is not unique. It is known that the native state is better described by an ensemble of conformers in a dynamic equilibrium. In this work, we studied the influence of conformational diversity in sequence divergence and protein evolution. For this purpose, we derived a set of 900 proteins with different degrees of conformational diversity from the PCDB database, a conformer database. With the aid of a structurally constrained protein evolutionary model, we explored the influence of the different conformations on sequence divergence. We found that the presence of conformational diversity strongly modulates the substitution pattern. Although the conformers share several of the structurally constrained sites, 30% of them are conformer specific. Also, we found that in 76% of the proteins studied, a single conformer outperforms the others in the prediction of sequence divergence. It is interesting to note that this conformer is usually the one that binds ligands participating in the biological function of the protein. The existence of a conformer-specific site-substitution pattern indicates that conformational diversity could play a central role in modulating protein evolution. Furthermore, our findings suggest that new evolutionary models and bioinformatics tools should be developed taking into account this substitution bias.


Assuntos
Conformação Proteica , Proteínas/química , Simulação por Computador , Bases de Dados de Proteínas , Evolução Molecular , Ligantes , Mutação , Filogenia , Proteínas/genética , Alinhamento de Sequência , Análise de Sequência/métodos
13.
Mol Biol Evol ; 30(7): 1500-3, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23564939

RESUMO

Native state of proteins is better represented by an ensemble of conformers in equilibrium than by only one structure. The extension of structural differences between conformers characterizes the conformational diversity of the protein. In this study, we found a negative correlation between conformational diversity and protein evolutionary rate. Conformational diversity was expressed as the maximum root mean square deviation (RMSD) between the available conformers in Conformational Diversity of Native State database. Evolutionary rate estimations were calculated using 16 different species compared with human sharing at least 700 orthologous proteins with known conformational diversity extension. The negative correlation found is independent of the protein expression level and comparable in magnitude and sign with the correlation between gene expression level and evolutionary rate. Our findings suggest that the structural constraints underlying protein dynamism, essential for protein function, could modulate protein divergence.


Assuntos
Evolução Molecular , Aptidão Genética , Conformação Proteica , Proteínas/genética , Algoritmos , Substituição de Aminoácidos/genética , Simulação por Computador , Variação Genética , Humanos , Filogenia , Dobramento de Proteína
14.
Bioinformatics ; 29(19): 2512-4, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23846747

RESUMO

MOTIVATION: Conformational diversity is a key concept in the understanding of different issues related with protein function such as the study of catalytic processes in enzymes, protein-protein recognition, protein evolution and the origins of new biological functions. Here, we present a database of proteins with different degrees of conformational diversity. Conformational Diversity of Native State (CoDNaS) is a redundant collection of three-dimensional structures for the same protein derived from protein data bank. Structures for the same protein obtained under different crystallographic conditions have been associated with snapshots of protein dynamism and consequently could characterize protein conformers. CoDNaS allows the user to explore global and local structural differences among conformers as a function of different parameters such as presence of ligand, post-translational modifications, changes in oligomeric states and differences in pH and temperature. Additionally, CoDNaS contains information about protein taxonomy and function, disorder level and structural classification offering useful information to explore the underlying mechanism of conformational diversity and its close relationship with protein function. Currently, CoDNaS has 122 122 structures integrating 12 684 entries, with an average of 9.63 conformers per protein. AVAILABILITY: The database is freely available at http://www.codnas.com.ar/.


Assuntos
Bases de Dados de Proteínas , Proteínas/química , Software , Internet , Ligantes , Modelos Moleculares , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Homologia Estrutural de Proteína
15.
Curr Protoc ; 3(5): e764, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37184204

RESUMO

CoDNaS (http://ufq.unq.edu.ar/codnas/) and CoDNaS-Q (http://ufq.unq.edu.ar/codnasq) are repositories of proteins with different degrees of conformational diversity. Following the ensemble nature of the native state, conformational diversity represents the structural differences between the conformers in the ensemble. Each entry in CoDNaS and CoDNaS-Q contains a redundant collection of experimentally determined conformers obtained under different conditions. These conformers represent snapshots of the protein dynamism. While CoDNaS contains examples of conformational diversity at the tertiary level, a recent development, CoDNaS-Q, contains examples at the quaternary level. In the emerging age of accurate protein structure prediction by machine learning approaches, many questions remain open regarding the characterization of protein dynamism. In this context, most bioinformatics resources take advantage of distinct features derived from protein alignments, however, the complexity and heterogeneity of information makes it difficult to recover reliable biological signatures. Here we present five protocols to explore tertiary and quaternary conformational diversity at the individual protein level as well as for the characterization of the distribution of conformational diversity at the protein family level in a phylogenetic context. These protocols can provide curated protein families with experimentally known conformational diversity, facilitating the exploration of sequence determinants of protein dynamism. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Assessing conformational diversity with CoDNaS Alternate Protocol 1: Assessing conformational diversity at the quaternary level with CoDNaS-Q Basic Protocol 2: Exploring conformational diversity in a protein family Alternate Protocol 2: Exploring quaternary conformational diversity in a protein family Basic Protocol 3: Representing conformational diversity in a phylogenetic context.


Assuntos
Proteínas , Filogenia , Bases de Dados de Proteínas , Conformação Proteica , Proteínas/genética , Proteínas/química
16.
Front Bioinform ; 3: 1137815, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37521316

RESUMO

One of the main topics of cardiovascular research is the study of calcium (Ca2+) handling, as even small changes in Ca2+ concentration can alter cell functionality (Bers, Annu Rev Physiol, 2014, 76, 107-127). Ionic calcium (Ca2+) plays the role of a second messenger in eukaryotic cells, associated with cellular functions such as cell cycle regulation, transport, motility, gene expression, and regulation. The use of fluorometric techniques in isolated cells loaded with Ca2+-sensitive fluorescent probes allows quantitative measurement of dynamic events occurring in living, functioning cells. The Cardiomyocytes Images Analyzer Python (CardIAP) application addresses the need to analyze and retrieve information from confocal microscopy images systematically, accurately, and rapidly. Here we present CardIAP, an open-source tool developed entirely in Python, freely available and useable in an interactive web application. In addition, CardIAP can be used as a standalone Python library and freely installed via PIP, making it easy to integrate into biomedical imaging pipelines. The images that can be generated in the study of the heart have the particularity of requiring both spatial and temporal analysis. CardIAP aims to open the field of cardiomyocytes and intact hearts image processing. The improvement in the extraction of information from the images will allow optimizing the usage of resources and animals. With CardIAP, users can run the analysis to both, the complete image, and portions of it in an easy way, and replicate it on a series of images. This analysis provides users with information on the spatial and temporal changes in calcium releases and characterizes them. The web application also allows users to extract calcium dynamics data in downloadable tables, simplifying the calculation of alternation and discordance indices and their classification. CardIAP aims to provide a tool that could assist biomedical researchers in studying the underlying mechanisms of anomalous calcium release phenomena.

17.
BMC Genomics ; 13 Suppl 4: S5, 2012 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-22759653

RESUMO

BACKGROUND: Non-synonymous coding SNPs (nsSNPs) that are associated to disease can also be related with alterations in protein stability. Computational methods are available to predict the effect of single amino acid substitutions (SASs) on protein stability based on a single folded structure. However, the native state of a protein is not unique and it is better represented by the ensemble of its conformers in dynamic equilibrium. The maintenance of the ensemble is essential for protein function. In this work we investigated how protein conformational diversity can affect the discrimination of neutral and disease related SASs based on protein stability estimations. For this purpose, we used 119 proteins with 803 associated SASs, 60% of which are disease related. Each protein was associated with its corresponding set of available conformers as found in the Protein Conformational Database (PCDB). Our dataset contains proteins with different extensions of conformational diversity summing up a total number of 1023 conformers. RESULTS: The existence of different conformers for a given protein introduces great variability in the estimation of the protein stability (ΔΔG) after a single amino acid substitution (SAS) as computed with FoldX. Indeed, in 35% of our protein set at least one SAS can be described as stabilizing, destabilizing or neutral when a cutoff value of ±2 kcal/mol is adopted for discriminating neutral from perturbing SASs. However, when the ΔΔG variability among conformers is taken into account, the correlation among the perturbation of protein stability and the corresponding disease or neutral phenotype increases as compared with the same analysis on single protein structures. At the conformer level, we also found that the different conformers correlate in a different way to the corresponding phenotype. CONCLUSIONS: Our results suggest that the consideration of conformational diversity can improve the discrimination of neutral and disease related protein SASs based on the evaluation of the corresponding Gibbs free energy change.


Assuntos
Substituição de Aminoácidos/fisiologia , Conformação Proteica , Proteínas/química , Proteínas/genética , Substituição de Aminoácidos/genética , Bases de Dados de Proteínas , Dobramento de Proteína
18.
Curr Res Struct Biol ; 3: 146-152, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34308370

RESUMO

Every biologist knows that the word protein describes a group of macromolecules essential to sustain life on Earth. As biologists, we are invariably trained under a protein paradigm established since the early twentieth century. However, in recent years, the term protein unveiled itself as an euphemism to describe the overwhelming heterogeneity of these compounds. Most of our current studies are targeted on carefully selected subsets of proteins, but we tend to think and write about these as representative of the whole population. Here we discuss how seeking for universal definitions and general rules in any arbitrarily segmented study would be misleading about the conclusions. Of course, it is not our purpose to discourage the use of the word protein. Instead, we suggest to embrace the extended universe of proteins to reach a deeper understanding of their full potential, realizing that the term encompasses a group of molecules very heterogeneous in terms of size, shape, chemistry and functions, i.e. the term protein no longer means what it used to.

19.
Database (Oxford) ; 20202020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32400867

RESUMO

Revenant is a database of resurrected proteins coming from extinct organisms. Currently, it contains a manually curated collection of 84 resurrected proteins derived from bibliographic data. Each protein is extensively annotated, including structural, biochemical and biophysical information. Revenant contains a browse capability designed as a timeline from where the different proteins can be accessed. The oldest Revenant entries are between 4200 and 3500 million years ago, while the younger entries are between 8.8 and 6.3 million years ago. These proteins have been resurrected using computational tools called ancestral sequence reconstruction techniques combined with wet-laboratory synthesis and expression. Resurrected proteins are commonly used, with a noticeable increase during the past years, to explore and test different evolutionary hypotheses such as protein stability, to explore the origin of new functions, to get biochemical insights into past metabolisms and to explore specificity and promiscuous behaviour of ancient proteins.


Assuntos
Bases de Dados de Proteínas , Extinção Biológica , Proteínas , Evolução Molecular , Proteínas/química , Proteínas/classificação , Proteínas/genética , Proteínas/metabolismo
20.
Methods Mol Biol ; 1851: 353-365, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30298408

RESUMO

The native state of proteins is composed of conformers in dynamical equilibrium. In this chapter, different issues related to conformational diversity are explored using a curated and experimentally based database called CoDNaS (Conformational Diversity in the Native State). This database is a collection of redundant structures for the same sequence. CoDNaS estimates the degree of conformational diversity using different global and local structural similarity measures. It allows the user to explore how structural differences among conformers change as a function of several structural features providing further biological information. This chapter explores the measurement of conformational diversity and its relationship with sequence divergence. Also, it discusses how proteins with high conformational diversity could affect homology modeling techniques.


Assuntos
Proteínas/química , Bases de Dados de Proteínas , Evolução Molecular , Simulação de Dinâmica Molecular , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa