Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 18(8): e1009100, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35951662

RESUMO

Single-cell genome sequencing provides a highly granular view of biological systems but is affected by high error rates, allelic amplification bias, and uneven genome coverage. This creates a need for data-specific computational methods, for purposes such as for cell lineage tree inference. The objective of cell lineage tree reconstruction is to infer the evolutionary process that generated a set of observed cell genomes. Lineage trees may enable a better understanding of tumor formation and growth, as well as of organ development for healthy body cells. We describe a method, Scelestial, for lineage tree reconstruction from single-cell data, which is based on an approximation algorithm for the Steiner tree problem and is a generalization of the neighbor-joining method. We adapt the algorithm to efficiently select a limited subset of potential sequences as internal nodes, in the presence of missing values, and to minimize cost by lineage tree-based missing value imputation. In a comparison against seven state-of-the-art single-cell lineage tree reconstruction algorithms-BitPhylogeny, OncoNEM, SCITE, SiFit, SASC, SCIPhI, and SiCloneFit-on simulated and real single-cell tumor samples, Scelestial performed best at reconstructing trees in terms of accuracy and run time. Scelestial has been implemented in C++. It is also available as an R package named RScelestial.


Assuntos
Algoritmos , Neoplasias , Evolução Biológica , Linhagem da Célula/genética , Humanos , Modelos Genéticos , Filogenia
2.
BMC Bioinformatics ; 22(1): 416, 2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34461827

RESUMO

BACKGROUND: Genetic heterogeneity of a cancer tumor that develops during clonal evolution is one of the reasons for cancer treatment failure, by increasing the chance of drug resistance. Clones are cell populations with different genotypes, resulting from differences in somatic mutations that occur and accumulate during cancer development. An appropriate approach for identifying clones is determining the variant allele frequency of mutations that occurred in the tumor. Although bulk sequencing data can be used to provide that information, the frequencies are not informative enough for identifying different clones with the same prevalence and their evolutionary relationships. On the other hand, single-cell sequencing data provides valuable information about branching events in the evolution of a cancerous tumor. However, the temporal order of mutations may be determined with ambiguities using only single-cell data, while variant allele frequencies from bulk sequencing data can provide beneficial information for inferring the temporal order of mutations with fewer ambiguities. RESULT: In this study, a new method called Conifer (ClONal tree Inference For hEterogeneity of tumoR) is proposed which combines aggregated variant allele frequency from bulk sequencing data with branching event information from single-cell sequencing data to more accurately identify clones and their evolutionary relationships. It is proven that the accuracy of clone identification and clonal tree inference is increased by using Conifer compared to other existing methods on various sets of simulated data. In addition, it is discussed that the evolutionary tree provided by Conifer on real cancer data sets is highly consistent with information in both bulk and single-cell data. CONCLUSIONS: In this study, we have provided an accurate and robust method to identify clones of tumor heterogeneity and their evolutionary history by combining single-cell and bulk sequencing data.


Assuntos
Neoplasias , Traqueófitas , Evolução Clonal , Genótipo , Humanos , Mutação , Neoplasias/genética , Análise de Célula Única
3.
Theor Biol Med Model ; 11: 2, 2014 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-24410898

RESUMO

BACKGROUND: Codon degeneracy and codon usage by organisms is an interesting and challenging problem. Researchers demonstrated the relation between codon usage and various functions or properties of genes and proteins, such as gene regulation, translation rate, translation efficiency, mRNA stability, splicing, and protein domains. Researchers usually represent segments of proteins responsible for specific functions or structures in a family of proteins as sequence patterns or motifs. We asked the question if organisms use the same codons in pattern segments as compared to the rest of the sequence. METHODS: We used the likelihood ratio test, Pearson's chi-squared test, and mutual information to compare these two codon usages. RESULTS: We showed that codon usage, in segments of genes that code for a given pattern or motif in a group of proteins, varied from the rest of the gene. The codon usage in these segments was not random. Amino acids with larger number of codons used more specific codon ratios in these segments. We studied the number of amino acids in the pattern (pattern length). As patterns got longer, there was a slight decrease in the fraction of patterns with significant different codon usage in the pattern region as compared to codon usage in the gene region. We defined a measure of specificity of protein patterns, and studied its relation to the codon usage. The difference in the codon usage between pattern region and gene region, was less for the patterns with higher specificity. CONCLUSIONS: We provided a hypothesis that there are segments on genes that affect the codon usage and thus influence protein translation speed, and these regions are the regions that code protein pattern regions.


Assuntos
Códon , Modelos Estatísticos , Proteínas/química , Sequência de Aminoácidos , Sequência de Bases , Funções Verossimilhança , Proteínas/genética
4.
Nat Commun ; 15(1): 5267, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902246

RESUMO

During the early stages of the SARS-CoV-2 pandemic, before vaccines were available, nonpharmaceutical interventions (NPIs) such as reducing contacts or antigenic testing were used to control viral spread. Quantifying their success is therefore key for future pandemic preparedness. Using 1.8 million SARS-CoV-2 genomes from systematic surveillance, we study viral lineage importations into Germany for the third pandemic wave from late 2020 to early 2021, using large-scale Bayesian phylogenetic and phylogeographic analysis with a longitudinal assessment of lineage importation dynamics over multiple sampling strategies. All major nationwide NPIs were followed by fewer importations, with the strongest decreases seen for free rapid tests, the strengthening of regulations on mask-wearing in public transport and stores, as well as on internal movements and gatherings. Most SARS-CoV-2 lineages first appeared in the three most populous states with most cases, and spread from there within the country. Importations rose before and peaked shortly after the Christmas holidays. The substantial effects of free rapid tests and obligatory medical/surgical mask-wearing suggests these as key for pandemic preparedness, given their relatively few negative socioeconomic effects. The approach relates environmental factors at the host population level to viral lineage dissemination, facilitating similar analyses of rapidly evolving pathogens in the future.


Assuntos
COVID-19 , Filogenia , Filogeografia , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , COVID-19/virologia , COVID-19/prevenção & controle , COVID-19/transmissão , SARS-CoV-2/genética , SARS-CoV-2/classificação , Alemanha/epidemiologia , Teorema de Bayes , Genoma Viral/genética , Pandemias/prevenção & controle
5.
Cells ; 11(22)2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36428963

RESUMO

Cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) and programmed cell death protein 1 (PD-1), two clinically relevant targets for the immunotherapy of cancer, are negative regulators of T-cell activation and migration. Optimizing the therapeutic response to CTLA-4 and PD-1 blockade calls for a more comprehensive insight into the coordinated function of these immune regulators. Mathematical modeling can be used to elucidate nonlinear tumor-immune interactions and highlight the underlying mechanisms to tackle the problem. Here, we investigated and statistically characterized the dynamics of T-cell migration as a measure of the functional response to these pathways. We used a previously developed three-dimensional organotypic culture of patient-derived tumor spheroids treated with anti-CTLA-4 and anti-PD-1 antibodies for this purpose. Experiment-based dynamical modeling revealed the delayed kinetics of PD-1 activation, which originates from the distinct characteristics of PD-1 and CTLA-4 regulation, and followed through with the modification of their contributions to immune modulation. The simulation results show good agreement with the tumor cell reduction and active immune cell count in each experiment. Our findings demonstrate that while PD-1 activation provokes a more exhaustive intracellular cascade within a mature tumor environment, the time-delayed kinetics of PD-1 activation outweighs its preeminence at the individual cell level and consequently confers a functional dominance to the CTLA-4 checkpoint. The proposed model explains the distinct immunostimulatory pattern of PD-1 and CTLA-4 blockade based on mechanisms involved in the regulation of their expression and may be useful for planning effective treatment schemes targeting PD-1 and CTLA-4 functions.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias , Humanos , Antígeno CTLA-4/metabolismo , Linfócitos T/metabolismo , Imunoterapia/métodos , Abatacepte , Neoplasias/patologia
6.
J Bioinform Comput Biol ; 18(1): 2050011, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32336249

RESUMO

Background: Patterns on proteins and genomic sequences are vastly analyzed, extracted and collected in databases. Although protein patterns originate from genomic coding regions, very few works have directly or indirectly dealt with coding region patterns induced from protein patterns. Results: In this paper, we have defined a new genomic pattern structure suitable for representing induced patterns from proteins. The provided pattern structure, which is called "Consecutive Positions Scoring Matrix (CPSSM)", is a replacement for protein patterns and profiles in the genomic context. CPSSMs can be identified, discovered, and searched in genomes. Then, we have presented a novel pattern matching algorithm between the defined genomic pattern and genomic sequences based on dynamic programming. In addition, we have modified the provided algorithm to support intronic gaps and huge sequences. We have implemented and tested the provided algorithm on real data. The results on Saccharomyces cerevisiae's genome show 132% more true positives and no false negatives and the results on human genome show no false negatives and 10 times as many true positives as those in previous works. Conclusion: CPSSM and provided methods could be used for open reading frame detection and gene finding. The application is available with source codes to run and download at http://app.foroughmand.ir/cpssm/.


Assuntos
Algoritmos , Motivos de Aminoácidos/genética , Biologia Computacional/métodos , Genoma , Genoma Humano , Humanos , Fases de Leitura Aberta
7.
PLoS One ; 14(5): e0215449, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31048917

RESUMO

Control problem in a biological system is the problem of finding an interventional policy for changing the state of the biological system from an undesirable state, e.g. disease, into a desirable healthy state. Boolean networks are utilized as a mathematical model for gene regulatory networks. This paper provides an algorithm to solve the control problem in Boolean networks. The proposed algorithm is implemented and applied on two biological systems: T-cell receptor network and Drosophila melanogaster network. Results show that the proposed algorithm works faster in solving the control problem over these networks, while having similar accuracy, in comparison to previous exact methods. Source code and a simple web service of the proposed algorithm is available at http://goliaei.ir/net-control/www/.


Assuntos
Algoritmos , Animais , Drosophila melanogaster/genética , Redes Reguladoras de Genes , Modelos Teóricos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo
8.
J Bioinform Comput Biol ; 16(4): 1850012, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30051743

RESUMO

Based on previous studies, empirical distribution of the bacterial burst size varies even in a population of isogenic bacteria. Since bacteriophage progenies increase linearly with time, it is the lysis time variation that results in the bacterial burst size variations. Here, the burst size variation is computationally modeled by considering the lysis time decisions as a game. Each player in the game is a bacteriophage that has initially infected and lysed its host bacterium. Also, the payoff of each burst size strategy is the average number of bacteria that are solely infected by the bacteriophage progenies after lysis. For calculating the payoffs, a new version of ball and bin model with time dependent occupation probabilities (TDOP) is proposed. We show that Nash equilibrium occurs for a range of mixed burst size strategies that are chosen and played by bacteriophages, stochastically. Moreover, it is concluded that the burst size variations arise from choosing mixed lysis strategies by each player. By choosing the lysis time and also the burst size stochastically, the released bacteriophage progenies infect a portion of host bacteria in environment and avoid extinction. The probability distribution of the mixed burst size strategies is also identified.


Assuntos
Bactérias/virologia , Bacteriólise/fisiologia , Modelos Biológicos , Modelos Estatísticos , Bactérias/citologia , Fenômenos Fisiológicos Bacterianos , Bacteriófagos , Teoria dos Jogos
9.
J Bioinform Comput Biol ; 13(2): 1550002, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25409941

RESUMO

Although it is known that synonymous codons are not chosen randomly, the role of the codon usage in gene regulation is not clearly understood, yet. Researchers have investigated the relation between the codon usage and various properties, such as gene regulation, translation rate, translation efficiency, mRNA stability, splicing, and protein domains. Recently, a universal codon usage based mechanism for gene regulation is proposed. We studied the role of protein sequence patterns on the codons usage by related genes. Considering a subsequence of a protein that matches to a pattern or motif, we showed that, parts of the genes, which are translated to this subsequence, use specific ratios of synonymous codons. Also, we built a multinomial logistic regression statistical model for codon usage, which considers the effect of patterns on codon usage. This model justifies the observed codon usage preference better than the classic organism dependent codon usage. Our results showed that the codon usage plays a role in controlling protein levels, for genes that participate in a specific biological function. This is the first time that this phenomenon is reported.


Assuntos
Códon/genética , Proteínas/genética , Sequência de Aminoácidos , Animais , Composição de Bases/genética , Biologia Computacional , Humanos , Modelos Logísticos , Biossíntese de Proteínas/genética , Estabilidade de RNA , Homologia de Sequência de Aminoácidos
10.
Asian J Sports Med ; 6(1): e23129, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25883772

RESUMO

BACKGROUND: Basic epidemiological data can provide estimates when discussing disease burden and in the planning and provision of healthcare strategies. There is little quantitative information in the literature regarding prevalence of traumatic injuries from developing countries. OBJECTIVES: The aim of the current preliminary study was to reveal the prevalence and age and gender distribution of various traumatic injuries in a tertiary referral orthopedic hospital in Iran. PATIENTS AND METHODS: In a prospective descriptive study, all traumatic injured patients attending the Orthopedic Trauma Unit of our center in a five year period were included. Demographic details, the cause of injury, injury classification and treatment were recorded. For each of the five-year age groups and each gender we calculated the numbers with fractures, dislocations, soft tissue injuries, ligamentous injuries and lacerations and derived average age and gender-specific prevalence as well as seasonal variations. RESULTS: A total of 18890 adults were admitted, 13870 (73.4%) males and 5020 (26.6%) females. There were 8204 (43.4%) fractures. The male fracture age distribution curve was unimodal and there was a detectable bimodal pattern in females. Under 65 years males are 3 times more likely to sustain a fracture than females which decreases to equal risk over the age of 65. The most common fracture site was distal radius/ulna (13.8%), followed by tibial diaphysis (8.8%), proximal femur (7.8%), finger phalanges (6.4%), metacarpals (6%) and metatarsals (5.9%). There were seasonal variations in fracture incidence with peaks in February, March and October. The least number of fractures occurred in June. CONCLUSIONS: The risk of traumatic injuries is higher among specific age groups with different patterns emerging for men and women. Thus, the descriptive epidemiology will provide useful information for treatment or injury prevention strategies, resource allocation, and training priorities.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa