Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
EMBO J ; 41(17): e108368, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35801308

RESUMO

The evolutionary benefit accounting for widespread conservation of oligomeric structures in proteins lacking evidence of intersubunit cooperativity remains unclear. Here, crystal and cryo-EM structures, and enzymological data, demonstrate that a conserved tetramer interface maintains the active-site structure in one such class of proteins, the short-chain dehydrogenase/reductase (SDR) superfamily. Phylogenetic comparisons support a significantly longer polypeptide being required to maintain an equivalent active-site structure in the context of a single subunit. Oligomerization therefore enhances evolutionary fitness by reducing the metabolic cost of enzyme biosynthesis. The large surface area of the structure-stabilizing oligomeric interface yields a synergistic gain in fitness by increasing tolerance to activity-enhancing yet destabilizing mutations. We demonstrate that two paralogous SDR superfamily enzymes with different specificities can form mixed heterotetramers that combine their individual enzymological properties. This suggests that oligomerization can also diversify the functions generated by a given metabolic investment, enhancing the fitness advantage provided by this architectural strategy.


Assuntos
Evolução Biológica , Oxirredutases , Sequência de Aminoácidos , Domínio Catalítico , Oxirredutases/metabolismo , Filogenia
2.
J Exp Bot ; 2024 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-39435638

RESUMO

A primary precursor of jasmonates 12-oxo-phytodienoic acid (OPDA) is an autonomous hormone signal that activates and fine-tunes plant defense responses, as well as growth and development. However, the architecture of its signaling circuits remains largely elusive. Here we describe that OPDA signaling drives photosynthetic reductant powers toward the plastid sulfur assimilations, incorporating sulfide into cysteine. Under stressed states, OPDA -accumulated in the chloroplasts- binds and promotes cyclophilin 20-3, an OPDA receptor, to transfer electrons from thioredoxin F2, an electron carrier in the photosynthesis reaction, to serine acetyltransferase 1 (SAT1). The charge carrier (H+, e-) then splits dimeric SAT1 trimers in half to signal the recruitment of dimeric O-acetylserine(thiol)lyase B, forming a hetero-oligomeric cysteine synthase complex (CSC). The CSC formation and its metabolic products (esp., glutathione) then coordinate redox-resolved retrograde signaling from the chloroplasts to the nucleus in adjusting OPDA-responsive gene expressions such as GLUTAREDOXIN 480 and CYTOCHROME P450, and actuating defense responses against various ecological constraints such as salinity and excess oxidants, as well as mechanical wounding. We thus conclude that OPDA signaling regulates a unique metabolic switch in channeling light input into outputs that fuel/shape a multitude of physiological processes, optimizing plant growth fitness and survival capacity under a range of environmental stress cues.

3.
Nat Chem Biol ; 18(1): 91-100, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34931062

RESUMO

Glutathione peroxidase 4 (GPX4), as the only enzyme in mammals capable of reducing esterified phospholipid hydroperoxides within a cellular context, protects cells from ferroptosis. We identified a homozygous point mutation in the GPX4 gene, resulting in an R152H coding mutation, in three patients with Sedaghatian-type spondylometaphyseal dysplasia. Using structure-based analyses and cell models, including patient fibroblasts, of this variant, we found that the missense variant destabilized a critical loop, which disrupted the active site and caused a substantial loss of enzymatic function. We also found that the R152H variant of GPX4 is less susceptible to degradation, revealing the degradation mechanism of the GPX4 protein. Proof-of-concept therapeutic treatments, which overcome the impaired R152H GPX4 activity, including selenium supplementation, selective antioxidants and a deuterated polyunsaturated fatty acid were identified. In addition to revealing a general approach to investigating rare genetic diseases, we demonstrate the biochemical foundations of therapeutic strategies targeting GPX4.


Assuntos
Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Medicina de Precisão , Humanos , Mutação Puntual , Estudo de Prova de Conceito
4.
Nature ; 523(7558): 111-4, 2015 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-25985179

RESUMO

Phosphofructokinase-1 (PFK1), the 'gatekeeper' of glycolysis, catalyses the committed step of the glycolytic pathway by converting fructose-6-phosphate to fructose-1,6-bisphosphate. Allosteric activation and inhibition of PFK1 by over ten metabolites and in response to hormonal signalling fine-tune glycolytic flux to meet energy requirements. Mutations inhibiting PFK1 activity cause glycogen storage disease type VII, also known as Tarui disease, and mice deficient in muscle PFK1 have decreased fat stores. Additionally, PFK1 is proposed to have important roles in metabolic reprogramming in cancer. Despite its critical role in glucose flux, the biologically relevant crystal structure of the mammalian PFK1 tetramer has not been determined. Here we report the first structures of the mammalian PFK1 tetramer, for the human platelet isoform (PFKP), in complex with ATP-Mg(2+) and ADP at 3.1 and 3.4 Å, respectively. The structures reveal substantial conformational changes in the enzyme upon nucleotide hydrolysis as well as a unique tetramer interface. Mutations of residues in this interface can affect tetramer formation, enzyme catalysis and regulation, indicating the functional importance of the tetramer. With altered glycolytic flux being a hallmark of cancers, these new structures allow a molecular understanding of the functional consequences of somatic PFK1 mutations identified in human cancers. We characterize three of these mutations and show they have distinct effects on allosteric regulation of PFKP activity and lactate production. The PFKP structural blueprint for somatic mutations as well as the catalytic site can guide therapeutic targeting of PFK1 activity to control dysregulated glycolysis in disease.


Assuntos
Modelos Moleculares , Neoplasias/enzimologia , Fosfofrutoquinase-1/química , Fosfofrutoquinase-1/genética , Ativação Enzimática , Humanos , Microscopia Eletrônica de Transmissão , Mutação/genética , Neoplasias/genética , Fosfofrutoquinase-1/ultraestrutura , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
5.
Nat Chem Biol ; 14(2): 156-162, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29251719

RESUMO

Vertebrate glycoproteins and glycolipids are synthesized in complex biosynthetic pathways localized predominantly within membrane compartments of the secretory pathway. The enzymes that catalyze these reactions are exquisitely specific, yet few have been extensively characterized because of challenges associated with their recombinant expression as functional products. We used a modular approach to create an expression vector library encoding all known human glycosyltransferases, glycoside hydrolases, and sulfotransferases, as well as other glycan-modifying enzymes. We then expressed the enzymes as secreted catalytic domain fusion proteins in mammalian and insect cell hosts, purified and characterized a subset of the enzymes, and determined the structure of one enzyme, the sialyltransferase ST6GalNAcII. Many enzymes were produced at high yields and at similar levels in both hosts, but individual protein expression levels varied widely. This expression vector library will be a transformative resource for recombinant enzyme production, broadly enabling structure-function studies and expanding applications of these enzymes in glycochemistry and glycobiology.


Assuntos
Perfilação da Expressão Gênica , Sialiltransferases/química , Animais , Baculoviridae/metabolismo , Cristalografia por Raios X , Monofosfato de Citidina/química , Vetores Genéticos , Glicosídeo Hidrolases/química , Glicosilação , Células HEK293 , Humanos , Insetos , Cinética , Proteínas Recombinantes/química , Sulfotransferases/química
6.
J Biol Chem ; 293(46): 17685-17704, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-29903914

RESUMO

Many disease-causing mutations impair protein stability. Here, we explore a thermodynamic strategy to correct the disease-causing F508del mutation in the human cystic fibrosis transmembrane conductance regulator (hCFTR). F508del destabilizes nucleotide-binding domain 1 (hNBD1) in hCFTR relative to an aggregation-prone intermediate. We developed a fluorescence self-quenching assay for compounds that prevent aggregation of hNBD1 by stabilizing its native conformation. Unexpectedly, we found that dTTP and nucleotide analogs with exocyclic methyl groups bind to hNBD1 more strongly than ATP and preserve electrophysiological function of full-length F508del-hCFTR channels at temperatures up to 37 °C. Furthermore, nucleotides that increase open-channel probability, which reflects stabilization of an interdomain interface to hNBD1, thermally protect full-length F508del-hCFTR even when they do not stabilize isolated hNBD1. Therefore, stabilization of hNBD1 itself or of one of its interdomain interfaces by a small molecule indirectly offsets the destabilizing effect of the F508del mutation on full-length hCFTR. These results indicate that high-affinity binding of a small molecule to a remote site can correct a disease-causing mutation. We propose that the strategies described here should be applicable to identifying small molecules to help manage other human diseases caused by mutations that destabilize native protein conformation.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Nucleotídeos de Timina/metabolismo , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Humanos , Ligação de Hidrogênio , Ligantes , Mutação , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Estabilidade Proteica , Desdobramento de Proteína , Termodinâmica
7.
Proc Natl Acad Sci U S A ; 111(44): E4697-705, 2014 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-25339443

RESUMO

Coenzyme Q (CoQ) is an isoprenylated quinone that is essential for cellular respiration and is synthesized in mitochondria by the combined action of at least nine proteins (COQ1-9). Although most COQ proteins are known to catalyze modifications to CoQ precursors, the biochemical role of COQ9 remains unclear. Here, we report that a disease-related COQ9 mutation leads to extensive disruption of the CoQ protein biosynthetic complex in a mouse model, and that COQ9 specifically interacts with COQ7 through a series of conserved residues. Toward understanding how COQ9 can perform these functions, we solved the crystal structure of Homo sapiens COQ9 at 2.4 Å. Unexpectedly, our structure reveals that COQ9 has structural homology to the TFR family of bacterial transcriptional regulators, but that it adopts an atypical TFR dimer orientation and is not predicted to bind DNA. Our structure also reveals a lipid-binding site, and mass spectrometry-based analyses of purified COQ9 demonstrate that it associates with multiple lipid species, including CoQ itself. The conserved COQ9 residues necessary for its interaction with COQ7 comprise a surface patch around the lipid-binding site, suggesting that COQ9 might serve to present its bound lipid to COQ7. Collectively, our data define COQ9 as the first, to our knowledge, mammalian TFR structural homolog and suggest that its lipid-binding capacity and association with COQ7 are key features for enabling CoQ biosynthesis.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Metabolismo dos Lipídeos/fisiologia , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Ubiquinona/biossíntese , Animais , Proteínas de Transporte/genética , Cristalografia por Raios X , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Mutantes , Proteínas Mitocondriais/genética , Oxigenases de Função Mista , Estrutura Terciária de Proteína , Ubiquinona/genética
8.
Biochemistry ; 55(41): 5798-5808, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27677419

RESUMO

RimO, a radical-S-adenosylmethionine (SAM) enzyme, catalyzes the specific C3 methylthiolation of the D89 residue in the ribosomal S12 protein. Two intact iron-sulfur clusters and two SAM cofactors both are required for catalysis. By using electron paramagnetic resonance, Mössbauer spectroscopies, and site-directed mutagenesis, we show how two SAM molecules sequentially bind to the unique iron site of the radical-SAM cluster for two distinct chemical reactions in RimO. Our data establish that the two SAM molecules bind the radical-SAM cluster to the unique iron site, and spectroscopic evidence obtained under strongly reducing conditions supports a mechanism in which the first molecule of SAM causes the reoxidation of the reduced radical-SAM cluster, impeding reductive cleavage of SAM to occur and allowing SAM to methylate a HS- ligand bound to the additional cluster. Furthermore, by using density functional theory-based methods, we provide a description of the reaction mechanism that predicts the attack of the carbon radical substrate on the methylthio group attached to the additional [4Fe-4S] cluster.


Assuntos
Proteínas Ferro-Enxofre/metabolismo , S-Adenosilmetionina/metabolismo , Sulfurtransferases/metabolismo , Catálise , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Mutagênese Sítio-Dirigida , Oxirredução , Análise Espectral/métodos , Sulfurtransferases/genética
9.
J Biol Inorg Chem ; 21(4): 549-57, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27259294

RESUMO

Radical SAM enzymes generally contain a [4Fe-4S](2+/1+) (RS cluster) cluster bound to the protein via the three cysteines of a canonical motif CxxxCxxC. The non-cysteinyl iron is used to coordinate SAM via its amino-carboxylate moiety. The coordination-induced proximity between the cluster acting as an electron donor and the adenosyl-sulfonium bond of SAM allows for the homolytic cleavage of the latter leading to the formation of the reactive 5'-deoxyadenosyl radical used for substrate activation. Most of the structures of Radical SAM enzymes have been obtained in the presence of SAM, and therefore, little is known about the situation when SAM is not present. In this report, we show that RimO, a methylthiotransferase belonging to the radical SAM superfamily, binds a Tris molecule in the absence of SAM leading to specific spectroscopic signatures both in Mössbauer and pulsed EPR spectroscopies. These data provide a cautionary note for researchers who work with coordinative unsaturated iron sulfur clusters.


Assuntos
S-Adenosilmetionina/química , Sulfurtransferases/química , Trometamina/química , Soluções Tampão , S-Adenosilmetionina/metabolismo , Sulfurtransferases/metabolismo , Thermotoga maritima/enzimologia
10.
Nat Chem Biol ; 9(5): 333-8, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23542644

RESUMO

How living organisms create carbon-sulfur bonds during the biosynthesis of critical sulfur-containing compounds is still poorly understood. The methylthiotransferases MiaB and RimO catalyze sulfur insertion into tRNAs and ribosomal protein S12, respectively. Both belong to a subgroup of radical-S-adenosylmethionine (radical-SAM) enzymes that bear two [4Fe-4S] clusters. One cluster binds S-adenosylmethionine and generates an Ado• radical via a well-established mechanism. However, the precise role of the second cluster is unclear. For some sulfur-inserting radical-SAM enzymes, this cluster has been proposed to act as a sacrificial source of sulfur for the reaction. In this paper, we report parallel enzymological, spectroscopic and crystallographic investigations of RimO and MiaB, which provide what is to our knowledge the first evidence that these enzymes are true catalysts and support a new sulfation mechanism involving activation of an exogenous sulfur cosubstrate at an exchangeable coordination site on the second cluster, which remains intact during the reaction.


Assuntos
Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/metabolismo , S-Adenosilmetionina/metabolismo , Enxofre/metabolismo , Sulfurtransferases/metabolismo , Thermotoga maritima/metabolismo , Biocatálise , Cristalografia por Raios X , Radicais Livres/metabolismo , Modelos Moleculares , Estrutura Molecular , Enxofre/química , Sulfurtransferases/química , Thermotoga maritima/enzimologia
11.
J Biol Chem ; 288(48): 34680-98, 2013 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-24155237

RESUMO

Glycan structures on glycoproteins and glycolipids play critical roles in biological recognition, targeting, and modulation of functions in animal systems. Many classes of glycan structures are capped with terminal sialic acid residues, which contribute to biological functions by either forming or masking glycan recognition sites on the cell surface or secreted glycoconjugates. Sialylated glycans are synthesized in mammals by a single conserved family of sialyltransferases that have diverse linkage and acceptor specificities. We examined the enzymatic basis for glycan sialylation in animal systems by determining the crystal structures of rat ST6GAL1, an enzyme that creates terminal α2,6-sialic acid linkages on complex-type N-glycans, at 2.4 Å resolution. Crystals were obtained from enzyme preparations generated in mammalian cells. The resulting structure revealed an overall protein fold broadly resembling the previously determined structure of pig ST3GAL1, including a CMP-sialic acid-binding site assembled from conserved sialylmotif sequence elements. Significant differences in structure and disulfide bonding patterns were found outside the sialylmotif sequences, including differences in residues predicted to interact with the glycan acceptor. Computational substrate docking and molecular dynamics simulations were performed to predict and evaluate the CMP-sialic acid donor and glycan acceptor interactions, and the results were compared with kinetic analysis of active site mutants. Comparisons of the structure with pig ST3GAL1 and a bacterial sialyltransferase revealed a similar positioning of donor, acceptor, and catalytic residues that provide a common structural framework for catalysis by the mammalian and bacterial sialyltransferases.


Assuntos
Cristalografia por Raios X , Polissacarídeos/química , Ácidos Siálicos/metabolismo , Sialiltransferases/química , Animais , Bactérias/enzimologia , Bactérias/genética , Sítios de Ligação , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Polissacarídeos/biossíntese , Conformação Proteica , Ratos , Ácidos Siálicos/química , Sialiltransferases/metabolismo , Relação Estrutura-Atividade , Suínos/genética , beta-D-Galactosídeo alfa 2-6-Sialiltransferase
12.
RNA Biol ; 11(12): 1508-18, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25629788

RESUMO

Over the last 10 years, significant progress has been made in understanding the genetics, enzymology and structural components of the wybutosine (yW) biosynthetic pathway. These studies have played a key role in expanding our understanding of yW biosynthesis and have revealed unexpected evolutionary ties, which are presently being unraveled. The enzymes catalyzing the 5 steps of this pathway, from genetically encoded guanosine to wybutosine base, provide an ensemble of amazing reaction mechanisms that are to be discussed in this review article.


Assuntos
Proteínas Arqueais/química , Nucleosídeos/biossíntese , Proteínas de Saccharomyces cerevisiae/química , tRNA Metiltransferases/química , Archaea/enzimologia , Archaea/genética , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Sequência de Bases , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , tRNA Metiltransferases/genética , tRNA Metiltransferases/metabolismo
13.
mBio ; 15(1): e0292623, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38112469

RESUMO

IMPORTANCE: Cyanide is an inhibitor of heme-copper oxidases, which are required for aerobic respiration in all eukaryotes and many prokaryotes. This fast-acting poison can arise from diverse sources, but mechanisms by which bacteria sense it are poorly understood. We investigated the regulatory response to cyanide in the pathogenic bacterium Pseudomonas aeruginosa, which produces cyanide as a virulence factor. Although P. aeruginosa has the capacity to produce a cyanide-resistant oxidase, it relies primarily on heme-copper oxidases and even makes additional heme-copper oxidase proteins specifically under cyanide-producing conditions. We found that the protein MpaR controls expression of cyanide-inducible genes in P. aeruginosa and elucidated the molecular details of this regulation. MpaR contains a DNA-binding domain and a domain predicted to bind pyridoxal phosphate (vitamin B6), a compound that is known to react spontaneously with cyanide. These observations provide insight into the understudied phenomenon of cyanide-dependent regulation of gene expression in bacteria.


Assuntos
Oxirredutases , Pseudomonas aeruginosa , Pseudomonas aeruginosa/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Cianetos/metabolismo , Respiração , Biofilmes , Heme/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
14.
Cell Chem Biol ; 31(4): 805-819.e9, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38061356

RESUMO

Transcription factors have proven difficult to target with small molecules because they lack pockets necessary for potent binding. Disruption of protein expression can suppress targets and enable therapeutic intervention. To this end, we developed a drug discovery workflow that incorporates cell-line-selective screening and high-throughput expression profiling followed by regulatory network analysis to identify compounds that suppress regulatory drivers of disease. Applying this approach to neuroblastoma (NBL), we screened bioactive molecules in cell lines representing its MYC-dependent (MYCNA) and mesenchymal (MES) subtypes to identify selective compounds, followed by PLATESeq profiling of treated cells. This revealed compounds that disrupt a sub-network of MYCNA-specific regulatory proteins, resulting in MYCN degradation in vivo. The top hit was isopomiferin, a prenylated isoflavonoid that inhibited casein kinase 2 (CK2) in cells. Isopomiferin and its structural analogs inhibited MYC and MYCN in NBL and lung cancer cells, highlighting the general MYC-inhibiting potential of this unique scaffold.

15.
Protein Sci ; 33(3): e4898, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38358135

RESUMO

Structural genomics consortia established that protein crystallization is the primary obstacle to structure determination using x-ray crystallography. We previously demonstrated that crystallization propensity is systematically related to primary sequence, and we subsequently performed computational analyses showing that arginine is the most overrepresented amino acid in crystal-packing interfaces in the Protein Data Bank. Given the similar physicochemical characteristics of arginine and lysine, we hypothesized that multiple lysine-to-arginine (KR) substitutions should improve crystallization. To test this hypothesis, we developed software that ranks lysine sites in a target protein based on the redundancy-corrected KR substitution frequency in homologs. This software can be run interactively on the worldwide web at https://www.pxengineering.org/. We demonstrate that three unrelated single-domain proteins can tolerate 5-11 KR substitutions with at most minor destabilization, and, for two of these three proteins, the construct with the largest number of KR substitutions exhibits significantly enhanced crystallization propensity. This approach rapidly produced a 1.9 Å crystal structure of a human protein domain refractory to crystallization with its native sequence. Structures from Bulk KR-substituted domains show the engineered arginine residues frequently make hydrogen-bonds across crystal-packing interfaces. We thus demonstrate that Bulk KR substitution represents a rational and efficient method for probabilistic engineering of protein surface properties to improve crystallization.


Assuntos
Lisina , Proteínas , Humanos , Lisina/química , Cristalização , Proteínas/genética , Aminoácidos/química , Cristalografia por Raios X , Arginina/metabolismo
16.
Nat Commun ; 15(1): 7195, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39179580

RESUMO

The myocyte enhancer factor 2B (MEF2B) transcription factor is frequently mutated in germinal center (GC)-derived B-cell lymphomas. Its ammino (N)-terminal mutations drive lymphomagenesis by escaping interaction with transcriptional repressors, while the function of carboxy (C)-terminal mutations remains to be elucidated. Here, we show that MEF2B C-tail is physiologically phosphorylated at specific residues and phosphorylation at serine (S)324 is impaired by lymphoma-associated mutations. Lack of phosphorylation at S324 enhances the interaction of MEF2B with the SWI/SNF chromatin remodeling complex, leading to higher transcriptional activity. In addition, these mutants show an increased protein stability due to impaired interaction with the CUL3/KLHL12 ubiquitin complex. Mice expressing a phosphorylation-deficient lymphoma-associated MEF2B mutant display GC enlargement and develop GC-derived lymphomas, when crossed with Bcl2 transgenic mice. These results unveil converging mechanisms of action for a diverse spectrum of MEF2B mutations, all leading to its dysregulation and GC B-cell lymphomagenesis.


Assuntos
Linfoma de Células B , Fatores de Transcrição MEF2 , Mutação , Animais , Humanos , Camundongos , Linfócitos B/metabolismo , Linhagem Celular Tumoral , Centro Germinativo/metabolismo , Células HEK293 , Linfoma de Células B/genética , Linfoma de Células B/metabolismo , Linfoma de Células B/patologia , Fatores de Transcrição MEF2/metabolismo , Fatores de Transcrição MEF2/genética , Camundongos Transgênicos , Fosforilação , Estabilidade Proteica , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética
17.
Biochemistry ; 52(48): 8663-76, 2013 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-24215428

RESUMO

Cyanobacterial phycobiliproteins have evolved to capture light energy over most of the visible spectrum due to their bilin chromophores, which are linear tetrapyrroles that have been covalently attached by enzymes called bilin lyases. We report here the crystal structure of a bilin lyase of the CpcS family from Thermosynechococcus elongatus (TeCpcS-III). TeCpcS-III is a 10-stranded ß barrel with two alpha helices and belongs to the lipocalin structural family. TeCpcS-III catalyzes both cognate as well as noncognate bilin attachment to a variety of phycobiliprotein subunits. TeCpcS-III ligates phycocyanobilin, phycoerythrobilin, and phytochromobilin to the alpha and beta subunits of allophycocyanin and to the beta subunit of phycocyanin at the Cys82-equivalent position in all cases. The active form of TeCpcS-III is a dimer, which is consistent with the structure observed in the crystal. With the use of the UnaG protein and its association with bilirubin as a guide, a model for the association between the native substrate, phycocyanobilin, and TeCpcS was produced.


Assuntos
Proteínas de Bactérias/química , Cianobactérias/enzimologia , Liases/química , Ficobiliproteínas/química , Sequência de Aminoácidos , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Análise Espectral
18.
J Biol Chem ; 287(3): 2130-43, 2012 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-22065580

RESUMO

Humans express nine paralogs of the bacterial DNA repair enzyme AlkB, an iron/2-oxoglutarate-dependent dioxygenase that reverses alkylation damage to nucleobases. The biochemical and physiological roles of these paralogs remain largely uncharacterized, hampering insight into the evolutionary expansion of the AlkB family. However, AlkB homolog 8 (ABH8), which contains RNA recognition motif (RRM) and methyltransferase domains flanking its AlkB domain, recently was demonstrated to hypermodify the anticodon loops in some tRNAs. To deepen understanding of this activity, we performed physiological and biophysical studies of ABH8. Using GFP fusions, we demonstrate that expression of the Caenorhabditis elegans ABH8 ortholog is widespread in larvae but restricted to a small number of neurons in adults, suggesting that its function becomes more specialized during development. In vitro RNA binding studies on several human ABH8 constructs indicate that binding affinity is enhanced by a basic α-helix at the N terminus of the RRM domain. The 3.0-Å-resolution crystal structure of a construct comprising the RRM and AlkB domains shows disordered loops flanking the active site in the AlkB domain and a unique structural Zn(II)-binding site at its C terminus. Although the catalytic iron center is exposed to solvent, the 2-oxoglutarate co-substrate likely adopts an inactive conformation in the absence of tRNA substrate, which probably inhibits uncoupled free radical generation. A conformational change in the active site coupled to a disorder-to-order transition in the flanking protein segments likely controls ABH8 catalytic activity and tRNA binding specificity. These results provide insight into the functional and structural adaptations underlying evolutionary diversification of AlkB domains.


Assuntos
Processamento Pós-Transcricional do RNA/fisiologia , RNA de Transferência/química , tRNA Metiltransferases/química , Homólogo AlkB 8 da RNAt Metiltransferase , Motivos de Aminoácidos , Catálise , Cristalografia por Raios X , Humanos , Estrutura Terciária de Proteína , RNA de Transferência/metabolismo , Especificidade por Substrato , tRNA Metiltransferases/metabolismo
19.
Biochim Biophys Acta ; 1824(11): 1223-30, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22178611

RESUMO

Over the past 10 years, considerable progress has been made in our understanding of the mechanistic enzymology of the Radical-SAM enzymes. It is now clear that these enzymes appear to be involved in a remarkably wide range of chemically challenging reactions. This review article highlights mechanistic and structural aspects of the methylthiotransferases (MTTases) sub-class of the Radical-SAM enzymes. The mechanism of methylthio insertion, now observed to be performed by three different enzymes is an exciting unsolved problem. This article is part of a Special Issue entitled: Radical SAM enzymes and Radical Enzymology.


Assuntos
Proteínas Ferro-Enxofre/metabolismo , Metiltransferases/metabolismo , S-Adenosilmetionina/metabolismo , Sulfurtransferases/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Biocatálise , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Radicais Livres/química , Radicais Livres/metabolismo , Humanos , Proteínas Ferro-Enxofre/química , Metiltransferases/química , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Estrutura Terciária de Proteína , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , S-Adenosilmetionina/química , Sulfurtransferases/química
20.
J Am Chem Soc ; 135(36): 13393-9, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-23924187

RESUMO

Genetically encoded unnatural amino acids could facilitate the design of proteins and enzymes of novel function, but correctly specifying sites of incorporation and the identities and orientations of surrounding residues represents a formidable challenge. Computational design methods have been used to identify optimal locations for functional sites in proteins and design the surrounding residues but have not incorporated unnatural amino acids in this process. We extended the Rosetta design methodology to design metalloproteins in which the amino acid (2,2'-bipyridin-5yl)alanine (Bpy-Ala) is a primary ligand of a bound metal ion. Following initial results that indicated the importance of buttressing the Bpy-Ala amino acid, we designed a buried metal binding site with octahedral coordination geometry consisting of Bpy-Ala, two protein-based metal ligands, and two metal-bound water molecules. Experimental characterization revealed a Bpy-Ala-mediated metalloprotein with the ability to bind divalent cations including Co(2+), Zn(2+), Fe(2+), and Ni(2+), with a Kd for Zn(2+) of ∼40 pM. X-ray crystal structures of the designed protein bound to Co(2+) and Ni(2+) have RMSDs to the design model of 0.9 and 1.0 Šrespectively over all atoms in the binding site.


Assuntos
Aminoácidos/química , Cobalto/química , Biologia Computacional , Metaloproteínas/síntese química , Metaloproteínas/química , Metaloproteínas/isolamento & purificação , Modelos Moleculares , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa