Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Talanta ; 271: 125639, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38219327

RESUMO

Moonmilk-type deposits exemplify carbonated Martian analogues existing in the subsurface of Earth, an endokarstic speleothem with a possible biochemical origin composed principally by carbonates, mainly huntite and dolomite. In this work, samples of moonmilk located in Nerja Cave (southern Spain) have been studied by LIBS with the aim of identifying carbon of biogenic origin by establishing a relationship between a molecular emission indicator, CN signal, and the organic carbon content. The characterization of this kind of carbonate deposit with a multiple mineralogical composition has been completed using scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and X-ray diffraction techniques for qualitative and semi-quantitative analysis. The information attained from LIBS regarding energy thresholds and time-resolved kinetics of CN emissions provides useful insight into the identification of different molecular emitters, namely organic and inorganic CN, depending on the laser irradiance and time settings conditions. These promising results are of application in the search and identification of biosignatures in upcoming planetary missions with astrobiological purposes.

2.
Anal Chim Acta ; 1276: 341632, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37573113

RESUMO

In this work, a geological sample of great astrobiological interest was studied through analytical techniques that are currently operating in situ on Mars and others that will operate in the near future. The sample analyzed consisted of an oncoid, which is a type of microbialite, collected in the Salar Carachi Pampa, Argentina. The main peculiarity of microbialites is that they are organo-sedimentary deposits formed by the in situ fixation and precipitation of calcium carbonate due to the growth and metabolic activities of microorganisms. For this reason, the Carachi Pampa oncoid was selected as a Martian analog for astrobiogeochemistry study. In this sense, the sample was characterized by means of the PIXL-like, SuperCam-like and SHERLOC-like instruments, which represent instruments on board the NASA Perseverance rover, and by means of RLS-like and MOMA-like instruments, which represent instruments on board the future ESA Rosalind Franklin rover. It was possible to verify that the most important conclusions and discoveries have been obtained from the combination of the results. Likewise, it was also shown that Perseverance rover-like remote-sensing instruments allowed a first detailed characterization of the biogeochemistry of the Martian surface. With this first characterization, areas of interest for in-depth analysis with Rosalind Franklin-like instruments could be identified. Therefore, from a first remote-sensing elemental identification (PIXL-like instrument), followed by a remote-sensing molecular characterization (SuperCam and SHERLOC-like instruments) and ending with an in-depth microscopic analysis (RLS and MOMA-like instruments), a wide variety of compounds were found. On the one hand, the expected minerals were carbonates, such as aragonite, calcite and high-magnesium calcite. On the other hand, unexpected compounds consisted of minerals related to the Martian/terrestrial surface (feldspars, pyroxenes, hematite) and organic compounds related to the past biological activity related to the oncoid (kerogen, lipid biomarkers and carotenes). Considering samples resembling microbialites have already been found on Mars and that one of the main objectives of the missions is to identify traces of past life, the study of microbialites is a potential way to find biosignatures protected from the inhospitable Martian environment. In addition, it should be noted that in this work, further conclusions have been obtained through the study of the results as a whole, which could also be carried out on Mars.

3.
Talanta ; 239: 123067, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34809981

RESUMO

In the present paper, confined dry Cu nanoaerosols of controlled particle size are inspected under a time-resolved LIBS scheme to explore the effect of laser-particulate matter interaction upon the detection capability of airborne nanoparticulate material. Optically catapulted streams probed showed linear intensity vs mass correlation and similar signal stability which is linked to the seeding effect caused by smaller particles yielding hotter, albeit shorter plasmas. Seeding effect is demonstrated by hyperspectral time-resolved aerosol inspection, which exposes both, the interaction between multiple plasma nuclei and the discrete nature of the laser-particle interaction. Observed population/exhaustion cycles at the focal volume of the inspection laser explained the uncertainty values characteristic of LIBS inspection of aerosols. A thorough inspection of the emission in time evidenced a significantly different evolution of the intensity profile for commonly monitored Cu lines owed not only to the nature of the monitored transit and pulse energy, but also to particle size. These results suggest that the experimental settings for quantitative ultrafine aerosol inspection need to be tuned according to the target particle size and the particle density of the aerosol as seeding effects facilitates signal saturation, therefore this effect simultaneously contributes to and detracts from the analytical performance of LIBS on nanometric aerosols.


Assuntos
Lasers , Material Particulado , Aerossóis/análise , Tamanho da Partícula
4.
Appl Spectrosc ; 62(11): 1250-5, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19007468

RESUMO

This paper reports the development and field testing of a man-portable instrument based on laser-induced breakdown spectrometry (LIBS) for inspection and analysis of speleothems. The 50 mJ of a Q-switched Nd:YAG laser operating at 1064 nm was used to generate a plasma on the sample. Plasma emission was then guided using a fiber-optic cable to a 1/10 m spectrometer equipped with a charge-coupled device (CCD) array detector. Plasma light was automatically processed in order to obtain surface and in-depth information from the speleothems. A field campaign in the interior of Nerja Cave (a large karstic formation in the South of Spain) has been carried out, aimed at evaluating the analytical performance of the instrument when operating in an unfriendly environment. Identification analysis of the speleothems' alteration layers and depth profiles of Sr and Ca is carried out and reported.

5.
Appl Spectrosc ; 61(7): 719-24, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17697466

RESUMO

Improvement in depth profiling capabilities of laser-induced breakdown spectrometry (LIBS) for multilayered samples has been attempted. For this purpose, in a typical LIBS experiment, an optical restriction consisting of a pinhole placed between the dichroic mirror and the collecting lenses has been used. This new optical approach allows observing only the light emission coming from the central region of the plume. The microplasma was created on the sample by a pulsed Nd:YAG laser operating at 1064 nm with a homogeneous distribution of energy across the beam. Light emitted by the microplasma was detected with an intensified charge-coupled device (iCCD) multichannel detector. The effect of pinhole diameter and the delay time influence on depth analysis have been assessed. An ablation range of only a few nanometers per pulse has been achieved. Depth profiles of various metals (Cr, Ni, Cu) from multilayered samples have been generated by LIBS and depth resolution at different delay times using various pinhole diameters have been calculated and compared.

6.
Appl Spectrosc ; 61(5): 558-64, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17555626

RESUMO

In this work, the capability of laser-induced breakdown spectrometry for the in situ analytical assessment and chemical mapping of the façade of the cathedral of Malaga (Spain) has been demonstrated. The task required the use of a portable laser analyzer that allowed real-time spectral acquisitions in the field. A man-portable laser, based on a Q-switched Nd:YAG laser operating at its fundamental wavelength, has been utilized to generate a LIBS plasma of the sample surface. A chemical characterization of the different materials employed in the construction of this building has been performed. The purpose of this study was to use LIBS spectrochemical analysis to qualitatively discriminate between sandstone, limestone, marble, and cement mortar, which are the main components used in this class of historical monument. The field analysis was performed in two zones: the northern façade and the "girola"; the total areas of analysis of the two regions were 250 m(2) and 650 m(2), respectively. Chemical images of Si/Ca and Ca/Mg ratios from both parts of the building were generated. During the measurement campaign, a protocol of analysis was chosen so as to achieve an accurate description of the building materials with respectable spatial resolutions.

7.
Anal Chim Acta ; 683(1): 52-7, 2010 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-21094380

RESUMO

Laser-induced breakdown spectroscopy (LIBS) has been used to identify the differences or similarities between crude oil and fuel residues. Firstly, a man portable LIBS analyzer was used for the on-site environmental control and analysis of the oil spill from The Prestige. An exhaustive analysis of crude oil and oil spill residues (collected during the field campaign in the Galician Coast) was performed in the laboratory. Characteristics elements in petroleum such as C, H, N, O, Mg, Na, Fe and V were detected. In addition, contributions from Ca, Si and Al in the composition of residues have been found. The use of intensity ratios of line and band emissions in the original fuel (crude oil) and in the aged residues allowed a better characterization of the samples than the simple use of peak intensities. The chemical composition between the crude oil and the fuel residues was found completely different. As well, a statistical method was employed in order to discriminate residues. Although significant differences were observed, no conclusions in terms of age and provenance could be reached due to the unknowledgment in the origin of the samples.

8.
Anal Chim Acta ; 633(1): 38-42, 2009 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-19110113

RESUMO

In situ, real time levels of lead in road sediments have been measured using a man-portable laser-induced breakdown spectroscopy analyzer. The instrument consists of a backpack and a probe housing a Q-switched Nd:YAG laser head delivering 50 mJ per pulse at 1064 nm. Plasma emission was collected and transmitted via fiber optic to a compact cross Czerny-Turner spectrometer equipped with a linear CCD array allocated in the backpack together with a personal computer. The limit of detection (LOD) for lead and the precision measured in the laboratory were 190 microg g(-1) (calculated by the 3 sigma method) and 9% R.S.D. (relative standard deviation), respectively. During the field campaign, averaged Pb concentration in the sediments were ranging from 480 microg g(-1) to 660 microg g(-1) depending on the inspected area, i.e. the entrance, the central part and the exit of the tunnel. These results were compared with those obtained with flame-atomic absorption spectrometry (flame-AAS). The relative error, expressed as [100(LIBS result-flame AAS result)/(LIBS result)], was approximately 14%.


Assuntos
Chumbo/análise , Análise Espectral/métodos , Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos , Lasers , Sensibilidade e Especificidade , Solo/análise , Análise Espectral/instrumentação , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa