Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 36(40): 11787-11797, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32936649

RESUMO

We introduce the design and study of a hybrid electrospun membrane with a dedicated nanoscale structural hierarchy for controlled functions in the biomedical domain. The hybrid system comprises submicrometer-sized internally self-assembled lipid nanoparticles (ISAsomes or mesosomes) embedded into the electrospun membrane with a nanofibrous polymer network. The internal structure of ISAsomes, studied by small-angle X-ray scattering (SAXS) and electron microscopy, demonstrated a spontaneous response to variations in the environmental conditions as they undergo a bicontinuous inverse cubic phase (cubosomes) in solution to a crystalline lamellar phase in the polymer membrane; nevertheless, this phase reorganization is reversible. As revealed by in situ SAXS measurements, if the membrane was put in contact with aqueous media, the cubic phase reappeared and submicrometer-sized cubosomes were released upon dissolution of the nanofibers. Furthermore, the hybrid membranes exhibited a specific anisotropic feature and morphological response under an external strain. While nanofibers were aligned under external strain in the microscale, the semicrystalline domains from the polymer phase were positioned perpendicular to the lamellae of the lipid phase in the nanoscale. The fabricated membranes and their spontaneous responses offer new strategies for the development of structure-controlled functions in electrospun nanofibers for biomedical applications, such as drug delivery or controlled interactions with biointerfaces.

2.
J Nanobiotechnology ; 18(1): 51, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32188479

RESUMO

The state-of-the-art hernia meshes, used in hospitals for hernia repair, are predominantly polymeric textile-based constructs that present high mechanical strength, but lack antimicrobial properties. Consequently, preventing bacterial colonization of implanted prosthetic meshes is of major clinical relevance for patients undergoing hernia repair. In this study, the co-axial electrospinning technique was investigated for the development of a novel mechanically stable structure incorporating dual drug release antimicrobial action. Core/shell structured nanofibers were developed, consisting of Nylon-6 in the core, to provide the appropriate mechanical stability, and Chitosan/Polyethylene oxide in the shell to provide bacteriostatic action. The core/shell structure consisted of a binary antimicrobial system incorporating 5-chloro-8-quinolinol in the chitosan shell, with the sustained release of Poly(hexanide) from the Nylon-6 core of the fibers. Homogeneous nanofibers with a "beads-in-fiber" architecture were observed by TEM, and validated by FTIR and XPS. The composite nanofibrous meshes significantly advance the stress-strain responses in comparison to the counterpart single-polymer electrospun meshes. The antimicrobial effectiveness was evaluated in vitro against two of the most commonly occurring pathogenic bacteria; S. aureus and P. aeruginosa, in surgical site infections. This study illustrates how the tailoring of core/shell nanofibers can be of interest for the development of active antimicrobial surfaces.


Assuntos
Antibacterianos/farmacologia , Caprolactama/análogos & derivados , Caprolactama/farmacologia , Quitosana/farmacologia , Nanofibras/química , Polímeros/farmacologia , Infecção da Ferida Cirúrgica/tratamento farmacológico , Antibacterianos/química , Quitosana/química , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Humanos , Cinética , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Polímeros/química , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Propriedades de Superfície , Telas Cirúrgicas
3.
Sensors (Basel) ; 20(2)2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31952123

RESUMO

Oxygen is ubiquitous in nature and it plays a key role in several biological processes, such as cellular respiration and food deterioration, to name a few. Currently, reversible and non-destructive oxygen sensing is usually performed with sensors produced by photosensitization of phosphorescent organometallic complexes. In contrast, we propose a novel route of optical oxygen sensing by fluorescence-based quenching of oxygen. We hereby developed for the first time a set of multi-emissive purely organic emitters. These were produced through a one-pot hydrothermal synthesis using p-phenylenediamine (PPD) and urea as starting materials. The origin of the multi-emission has been ascribed to the diversity of chemical structures produced as a result of oxidative oligomerization of PPD. A Bandrowski's base (BB, i.e., trimer of PPD) is reported as the main component at reaction times higher than 8 h. This indication was confirmed by electrospray-ionization quadrupole time-of-flight (ESI-QTOF) and liquid chromatography-mass spectrometry (LC-MS) analysis. Once the emitters are embedded within a high molecular weight poly (vinyl alcohol) matrix, the intensities of all three emission centers exhibit a non-linear quenching provoked by oxygen within the range of 0-8 kPa. The detection limit of the emission centers are 0.89 kPa, 0.67 kPa and 0.75 kPa, respectively. This oxygen-dependent change in fluorescence emission is reversible (up to three tested 0-21% O2 cycles) and reproducible with negligible cross-interference to humidity. The cost-effectiveness, metal-free formulation, cross-referencing between each single emission center and the relevant oxygen range are all appealing features, making these sensors promising for the detection of oxygen, e.g., in food packaged products.

4.
Langmuir ; 35(5): 1882-1894, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30153734

RESUMO

Biofouling on silicone implants causes serious complications such as fibrotic encapsulation, bacterial infection, and implant failure. Here we report the development of antifouling, antibacterial silicones through covalent grafting with a cell-membrane-inspired zwitterionic gel layer composed of 2-methacryolyl phosphorylcholine (MPC). To investigate how substrate properties influence cell adhesion, we cultured human-blood-derived macrophages and Escherichia coli on poly(dimethylsiloxane) (PDMS) and MPC gel surfaces with a range of 0.5-50 kPa in stiffness. Cells attach to glass, tissue culture polystyrene, and PDMS surfaces, but they fail to form stable adhesions on MPC gel surfaces due to their superhydrophilicity and resistance to biofouling. Cytokine secretion assays confirm that MPC gels have a much lower potential to trigger proinflammatory macrophage activation than PDMS. Finally, modification of the PDMS surface with a long-term stable hydrogel layer was achieved by the surface-initiated atom-transfer radical polymerization (SI-ATRP) of MPC and confirmed by the decrease in contact angle from 110 to 20° and the >70% decrease in the attachment of macrophages and bacteria. This study provides new insights into the design of antifouling and antibacterial interfaces to improve the long-term biocompatibility of medical implants.


Assuntos
Antibacterianos/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Incrustação Biológica/prevenção & controle , Dimetilpolisiloxanos/síntese química , Ativação de Macrófagos/efeitos dos fármacos , Metacrilatos/farmacologia , Fosforilcolina/análogos & derivados , Adsorção , Antibacterianos/química , Antibacterianos/toxicidade , Dimetilpolisiloxanos/toxicidade , Escherichia coli/fisiologia , Fibroblastos/efeitos dos fármacos , Géis/química , Géis/farmacologia , Géis/toxicidade , Humanos , Metacrilatos/química , Metacrilatos/toxicidade , Fosforilcolina/química , Fosforilcolina/farmacologia , Fosforilcolina/toxicidade , Proteínas/química
5.
ACS Omega ; 9(23): 25124-25134, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38882148

RESUMO

Core/shell nanofibers offer the advantage of encapsulating multiple drugs with different hydrophilicity in the core and shell, thus allowing for the controlled release of pharmaceutic agents. Specifically, the burst release of hydrophilic drugs from such fiber membranes causes an instantaneous high drug concentration, whereas a long and steady release is usually desired. Herein, we tackle the problem of the initial burst release by the generation of core/shell nanofibers with the hydrophilic antibiotic drug gentamycin loaded within a hydrophilic alginate core surrounded by a hydrophobic shell of poly(ε-caprolactone). Emulsion electrospinning was used as the nanofibrous mesh generation procedure. This process also allows for the loading of a hydrophobic compound, where we selected a natural antioxidant molecule, betulin (BTL), to detoxify the radicals. The resulting nanofibers exhibited a cylindrical shape with a core/shell structure. In vitro tests showed a controlled release of gentamicin from nanofibers via diffusion. The drug reached 93% release in an alginate hydrogel film but only 50% release in the nanofibers, suggesting its potential to minimize the initial burst release. Antibacterial tests revealed significant activity against both Gram-negative and Gram-positive bacteria. The antioxidant property of betulin was confirmed through the DPPH assay, where the incorporation of 20% BTL revealed 37.3% DPPH scavenging. The nanofibers also exhibited favorable biocompatibility in cell culture studies, and no harmful effects on cell viability were observed. Overall, this research offers a promising approach to producing core/shell nanofibrous mats with antibacterial and antioxidant properties, which could effectively address the requirements of wound dressings, including infection prevention and wound healing acceleration.

6.
Chemphyschem ; 13(12): 2937-44, 2012 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-22674527

RESUMO

Anodization of α-Fe(2)O(3) (hematite) electrodes in alkaline electrolyte under constant potential conditions the electrode surface in a way that an additional current wave occurs in the cyclic voltammogram. The energy position of this current wave is closely below the potential of the anodization treatment. Continued cycling or exchanging of the electrolyte causes depletion of this new feature. The O 1s and Fe 2p core-level X-ray photoelectron spectra (XPS) and near-edge X-ray absorption fine structure (NEXAFS) spectra of such conditioned hematite exhibit a chemical shift towards higher binding energies, in line with the general perception that anodization generates oxide species with dielectric properties. The valence band XPS and particularly the iron resonant valence band photoemission spectra, however, are shifted towards the opposite direction, that is, towards the Fermi energy, suggesting that hole doping on hematite has taken place during anodization. Quantitative analysis of the Fe 2p resonant valence band photoemission spectra shows that the spectra obtained at the Fe 2p absorption threshold are shifted by virtually the same energy as the anodization potential towards the Fermi energy. The tentative interpretation of this observation is that anodization forms a surface film on the hematite that is specific to the anodization potential.

7.
Nanoscale ; 14(33): 12136-12152, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35968642

RESUMO

The design of safe and effective nanoparticles (NPs) for commercial and medical applications requires a profound understanding of NP translocation and effects at biological barriers. To gain mechanistic insights, physiologically relevant and accurate human in vitro biobarrier models are indispensable. However, current transfer models largely rely on artificial porous polymer membranes for the cultivation of cells, which do not provide a close mimic of the natural basal membrane and intrinsically provide limited permeability for NPs. In this study, electrospinning is exploited to develop thin chitosan/polyethylene oxide (PEO) membranes with a high porosity and nanofibrous morphology for more predictive NP transfer studies. The nanofiber membranes allow the cultivation of a tight and functional placental monolayer (BeWo trophoblasts). Translocation studies with differently sized molecules and NPs (Na-fluorescein; 40 kDa FITC-Dextran; 25 nm PMMA; 70, 180 and 520 nm polystyrene NPs) across empty and cell containing membranes reveal a considerably enhanced permeability compared to commercial microporous membranes. Importantly, the transfer data of NPs is highly similar to data from ex vivo perfusion studies of intact human placental tissue. Therefore, the newly developed membranes may decisively contribute to establish physiologically relevant in vitro biobarrier transfer models with superior permeability for a wide range of molecules and particles.


Assuntos
Quitosana , Nanofibras , Nanopartículas , Feminino , Humanos , Membranas Artificiais , Nanopartículas/metabolismo , Placenta , Polietilenoglicóis/metabolismo , Gravidez
8.
Nanoscale Adv ; 4(13): 2929-2941, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-36131996

RESUMO

Electrospun nanofibers have shown great potential as drug vehicles and tissue engineering scaffolds. However, the successful encapsulation of multiple hydrophilic/hydrophobic therapeutic compounds is still challenging. Herein, sodium alginate/poly(ε-caprolactone) core/shell nanofibers were fabricated via water-in-oil emulsion electrospinning. The sodium alginate concentration, water-to-oil ratio, and surfactant concentration were optimized for the maximum stability of the emulsion. The results demonstrated that an increasing water-to-oil ratio results in more deviation from Newtonian fluid and leads to a broader distribution of the fibers' diameters. Moreover, increasing poly(ε-caprolactone) concentration increases loss and storage moduli and increases the diameter of the resulting fibers. The nanofibers' characteristics were investigated by scanning electron microscopy, transmission electron microscopy, confocal laser scanning microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and water contact angle measurements. It was observed that using an emulsion composition of 10% (w/v) PCL and a water-to-oil ratio of 0.1 results in smooth, cylindrical, and uniform core/shell nanofibers with PCL in the shell and ALG in the core. The in vitro cell culture study demonstrated the favorable biocompatibility of nanofibers. Overall, this study provides a promising and trustworthy material for biomedical applications.

9.
Mater Sci Eng C Mater Biol Appl ; 130: 112427, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34702512

RESUMO

Controlling the architecture of engineered scaffolds is of outmost importance to induce a targeted cell response and ultimately achieve successful tissue regeneration upon implantation. Robust, reliable and reproducible methods to control scaffold properties at different levels are timely and highly important. However, the multiscale architectural properties of electrospun membranes are very complex, in particular the role of fiber-to-fiber interactions on mechanical properties, and their effect on cell response remain largely unexplored. The work reported here reveals that the macroscopic membrane stiffness, observed by stress-strain curves, cannot be predicted solely based on the Young's moduli of the constituting fibers but is rather influenced by interactions on the microscale, namely the number of fiber-to-fiber bonds. To specifically control the formation of these bonds, solvent systems of the electrospinning solution were fine-tuned, affecting the membrane properties at every length-scale investigated. In contrast to dichloromethane that is characterized by a high vapor pressure, the use of trifluoroacetic acid, a solvent with a lower vapor pressure, favors the generation of fiber-to-fiber bonds. This ultimately led to an overall increased Young's modulus and yield stress of the membrane despite a lower stiffness of the constituting fibers. With respect to tissue engineering applications, an experimental setup was developed to investigate the effect of architectural parameters on the ability of cells to infiltrate and migrate within the scaffold. The results reveal that differences in fiber-to-fiber bonds significantly affect the infiltration of normal human dermal fibroblasts into the membranes. Membranes of loose fibers with low numbers of fiber-to-fiber bonds, as obtained from spinning solutions using dichloromethane, promote cellular infiltration and are thus promising candidates for the formation of a 3D tissue.


Assuntos
Nanofibras , Alicerces Teciduais , Módulo de Elasticidade , Humanos , Membranas , Engenharia Tecidual
10.
Nanomaterials (Basel) ; 11(7)2021 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-34361236

RESUMO

The surface functionalization of electrospun nanofibers allows for the introduction of additional functionalities while at the same time retaining the membrane properties of high porosity and surface-to-volume ratio. In this work, we sequentially deposited layers of chitosan and alginate to form a polyelectrolyte complex via layer-by-layer assembly on PLGA nanofibers to introduce pH-responsiveness for the controlled release of ibuprofen. The deposition of the polysaccharides on the surface of the fibers was revealed using spectroscopy techniques and ζ-potential measurements. The presence of polycationic chitosan resulted in a positive surface charge (16.2 ± 4.2 mV, pH 3.0) directly regulating the interactions between a model drug (ibuprofen) loaded within the polyelectrolyte complex and the layer-by-layer coating. The release of ibuprofen was slowed down in acidic pH (1.0) compared to neutral pH as a result of the interactions between the drug and the coating. The provided mesh acts as a promising candidate for the design of drug delivery systems required to bypass the acidic environment of the digestive tract.

11.
Artigo em Inglês | MEDLINE | ID: mdl-32166881

RESUMO

This review provides insights into the current advancements in the field of electrospinning, focusing on its applications for skin tissue engineering. Furthermore, it reports the evolvement and present challenges of advanced skin substitute product development and explores the recent contributions in 2D and 3D scaffolding, focusing on natural, synthetic, and composite nanomaterials. In the past decades, nanotechnology has arisen as a fascinating discipline that has influenced every aspect of science, engineering, and medicine. Electrospinning is a versatile fabrication method that allows researchers to elicit and explore many of the current challenges faced by tissue engineering and regenerative medicine. In skin tissue engineering, electrospun nanofibers are particularly attractive due to their refined morphology, processing flexibility-that allows for the formation of unique materials and structures, and its extracellular matrix-like biomimetic architecture. These allow for electrospun nanofibers to promote improved re-epithelization and neo-tissue formation of wounds. Advancements in the use of portable electrospinning equipment and the employment of electrospinning for transdermal drug delivery and melanoma treatment are additionally explored. Present trends and issues are critically discussed based on recently published patents, clinical trials, and in vivo studies. This article is categorized under: Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement Therapeutic Approaches and Drug Discovery > Emerging Technologies Implantable Materials and Surgical Technologies > Nanomaterials and Implants.


Assuntos
Nanofibras/química , Pele/metabolismo , Engenharia Tecidual , Alicerces Teciduais/química , Animais , Matriz Extracelular/metabolismo , Humanos , Pele/anatomia & histologia , Cicatrização
12.
Biointerphases ; 15(1): 011006, 2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-32085677

RESUMO

Polymer surface grafting is widely used in the field of bone regeneration to increase calcium phosphate (CaP) adhesion, with the intent of improving mechanical properties of CaP-polymer composite cements. Reinforcement can be achieved using multiple combined functional groups and/or complex surface geometries that, however, concurrently influence multiple effects such as wetting, roughness, and interfacial strengthening. This study focused on the influence of a chelating group, namely aspartic acid, on the adsorption of divalent ions such as Ba2+ or Ca2+ onto poly-l-lactic acid (PLA) films. The films were analyzed using contact angle measurements and X-ray photoelectron spectroscopy. The adsorption of CaP and its interfacial mechanical properties were investigated using functionalized PLA monofilaments whose surface roughness was analyzed using white light interferometry. Mechanical analysis was conducted by performing pull-out tests. The surfaces were analyzed using scanning electron microscopy and energy dispersive X-ray spectroscopy. Using aspartic acid as a chelating group resulted in a 50 % increased adsorption of barium, an almost threefold increase in calcium coverage of the fiber compared to the control group and a twofold increase in interfacial stiffness. No significant increase in interfacial strength was determined, most likely due to the weakness of the CaP matrix, which was partially visible as residues on the monofilaments in the postfracture imaging. This study shows the potential of surfaces functionalized with aspartic acid as a simple alternative to complex polypeptide based functional groups for the adsorption of divalent ions such as calcium on poly-lactic acid in bone regenerating applications.


Assuntos
Cálcio/química , Quelantes/química , Poliésteres/química , Adsorção , Ácido Aspártico/química , Bário/química , Fosfatos de Cálcio/química , Íons/química , Teste de Materiais , Espectroscopia Fotoeletrônica , Gases em Plasma/química , Propriedades de Superfície , Resistência à Tração , Molhabilidade
13.
J Mech Behav Biomed Mater ; 104: 103634, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32174394

RESUMO

In the present paper, the three-dimensional structure and macroscopic mechanical response of electrospun poly(L-lactide) membranes is predicted based only on the geometry and elasto-plastic mechanical properties of single fibres supplemented by measurements of membrane weight and volume, and the resulting computational models are used to study the non-affine micro-kinematics of electrospun networks. To this end, statistical parameters describing the in-plane fibre morphology are extracted from scanning electron micrographs of the membranes, and computational network models are generated by matching the porosity of the real mats. The virtual networks are compared against computed tomography scans in terms of structure, and against uniaxial tension tests with respect to their macroscopic mechanical response. The obtained virtual network structure agrees well with the fibre disposition in real networks, and the rigorous prediction of the mechanical response of two membranes with mean diameters of 1.10µm and 0.70µm captures the experimental behaviour qualitatively. Favourable quantitative agreement, however, is obtained only after lowering the Young's moduli, yield stresses and hardening slopes determined in single fibre tests, and after reducing the density of inter-fibre bonds in the model of the membrane with thinner fibres. The simulations thus demonstrate the validity and merits of the approach to study the multi-scale mechanics of electrospun networks, but also point to potential discrepancies between the properties of electrospun fibres within a network and those produced for single fibre characterisation, and highlight the existing uncertainty on the density and quality of bonds between fibres in electrospun networks.


Assuntos
Membranas , Fenômenos Biomecânicos , Módulo de Elasticidade , Porosidade
14.
Mater Sci Eng C Mater Biol Appl ; 112: 110939, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32409085

RESUMO

In this work, a nozzle-free electrospinning device was built to obtain high-throughput production of silk fibroin-based biocompatible composite fibers with tunable wettability. Synthetic biomaterials tend to present suboptimal cell growth and proliferation, with many studies linking this phenomenon to the hydrophobicity of such surfaces. In this study, electrospun mats consisting of Poly(caprolactone) blended with variant forms of Poly(glycerol sebacate) (PGS) and regenerated silk fibroin were fabricated. The main aim of this work was the development of fiber mats with tunable hydrophobicity/hydrophilicity properties depending on the esterification degree and concentration of PGS. A variation of the conventional protocol used for the extraction of silk fibroin from Bombyx mori cocoons was employed, achieving significantly increased yields of the protein, in a third of the time required via the conventional extraction protocol. By altering the surface properties of the electrospun membranes, the trinary composite biomaterial presented good in vitro fibroblast attachment behavior and optimal growth, indicating the potential of such constructs towards the development of an artificial skin-like platform that can aid wound healing and skin regeneration.


Assuntos
Materiais Biocompatíveis/química , Fibroínas/química , Engenharia Tecidual , Materiais Biocompatíveis/farmacologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Decanoatos/química , Fibroblastos/citologia , Fibroblastos/metabolismo , Glicerol/análogos & derivados , Glicerol/química , Humanos , Poliésteres/química , Polímeros/química , Porosidade , Propriedades de Superfície , Alicerces Teciduais/química , Molhabilidade
15.
Adv Healthc Mater ; 9(7): e1901850, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32159927

RESUMO

Progressive antibiotic resistance is a serious condition adding to the challenges associated with skin wound treatment, and antibacterial wound dressings with alternatives to antibiotics are urgently needed. Cellulose-based membranes are increasingly considered as wound dressings, necessitating further functionalization steps. A bifunctional peptide, combining an antimicrobial peptide (AMP) and a cellulose binding peptide (CBP), is designed. AMPs affect bacteria via multiple modes of action, thereby reducing the evolutionary pressure selecting for antibiotic resistance. The bifunctional peptide is successfully immobilized on cellulose membranes of bacterial origin or electrospun fibers of plant-derived cellulose, with tight control over peptide concentrations (0.2 ± 0.1 to 4.6 ± 1.6 µg mm-2 ). With this approach, new materials with antibacterial activity against Staphylococcus aureus (log4 reduction) and Pseudomonas aeruginosa (log1 reduction) are developed. Furthermore, membranes are cytocompatible in cultures of human fibroblasts. Additionally, a cell adhesive CBP-RGD peptide is designed and immobilized on membranes, inducing a 2.2-fold increased cell spreading compared to pristine cellulose. The versatile concept provides a toolbox for the functionalization of cellulose membranes of different origins and architectures with a broad choice in peptides. Functionalization in tris-buffered saline avoids further purification steps, allowing for translational research and multiple applications outside the field of wound dressings.


Assuntos
Anti-Infecciosos , Celulose , Antibacterianos/farmacologia , Bandagens , Humanos , Peptídeos
16.
J R Soc Interface ; 16(159): 20190217, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31594525

RESUMO

The state-of-the-art in wearable flexible sensors (WFSs) for sweat analyte detection was investigated. Recent advances show the development of integrated, mechanically flexible and multiplexed sensor systems with on-site circuitry for signal processing and wireless data transmission. When compared with single-analyte sensors, such devices provide an opportunity to more accurately analyse analytes that are dependent on other parameters (such as sweat rate and pH) by improving calibration from in situ real-time analysis, while maintaining a lightweight and wearable design. Important health conditions can be monitored and on-demand regulating drugs can be delivered using integrated wearable systems but require correlation verification between sweat and blood measurements using in vivo validation tests before any clinical application can be considered. Improvements are necessary for device sensitivity, accuracy and repeatability to provide more reliable and personalized continuous measurements. With rapid recent development, it can be concluded that non-invasive WFSs for sweat analysis have only skimmed the surface of their health monitoring potential and further significant advancement is sure to be made in the medical field.


Assuntos
Processamento de Sinais Assistido por Computador , Suor/metabolismo , Dispositivos Eletrônicos Vestíveis , Humanos , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos
17.
Med Eng Phys ; 71: 56-67, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31257053

RESUMO

A novel composite for skin tissue engineering applications by use of blends of Poly(vinylpyrrolidone) (PVP) and Poly (glycerol sebacate) (PGS) was fabricated via the scalable nozzle-free electrospinning technique. The formed PVP:PGS blends were morphologically, thermochemically and mechanically characterized. The morphology of the developed fibers correlated to the blend ratio. The tensile modulus appeared to be affected by the concentration of PGS within the blends, with an apparent decrease in the elastic modulus of the electrospun mats and an exponential increase of the elongation at break. Ultraviolet (UV) crosslinking of the composite fibers significantly decreased the construct's wettability and stabilized the formed fiber mats, which was indicated by contact angle measurements. In vitro examination showed good viability and proliferation of human dermal fibroblast cells. The present findings provide valuable insights for tuning the elastic properties of electrospun material by incorporating this unique elastomer as a promising future candidate for skin substitute constructs.


Assuntos
Materiais Biocompatíveis/química , Decanoatos/química , Eletricidade , Glicerol/análogos & derivados , Polímeros/química , Povidona/química , Pele/citologia , Engenharia Tecidual , Alicerces Teciduais/química , Materiais Biocompatíveis/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Glicerol/química , Humanos , Teste de Materiais , Fenômenos Mecânicos , Propriedades de Superfície , Temperatura
18.
Nanomaterials (Basel) ; 9(11)2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31731775

RESUMO

Diseases of periodontal tissues are a considerable clinical problem, connected with inflammatory processes and bone loss. The healing process often requires reconstruction of lost bone in the periodontal area. For that purpose, various membranes are used to prevent ingrowth of epithelium in the tissue defect and enhance bone regeneration. Currently-used membranes are mainly non-resorbable or are derived from animal tissues. Thus, there is an urgent need for non-animal-derived bioresorbable membranes with tuned resorption rates and porosity optimized for the circulation of body nutrients. We demonstrate membranes produced by the electrospinning of biodegradable polymers (PDLLA/PLGA) coated with nanohydroxyapatite (nHA). The nHA coating was made using two methods: sonocoating and electrospraying of nHA suspensions. In a simulated degradation study, for electrosprayed membranes, short-term calcium release was observed, followed by hydrolytic degradation. Sonocoating produced a well-adhering nHA layer with full coverage of the fibers. The layer slowed the polymer degradation and increased the membrane wettability. Due to gradual release of calcium ions the degradation-associated acidity of the polymer was neutralized. The sonocoated membranes exhibited good cellular metabolic activity responses against MG-63 and BJ cells. The collected results suggest their potential use in Guided Tissue Regeneration (GTR) and Guided Bone Regeneration (GBR) periodontal procedures.

19.
Nanoscale ; 11(36): 16788-16800, 2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31465059

RESUMO

The design of nanofibers for biomedical applications requires a deep understanding of the fiber formation process and the resulting internal structure. In this regard, non-crystalline, mesomorphic structures play a central role in the processing of many polymers as precursors in the formation of crystalline superstructures (e.g. shish-kebab) and influence strongly the physical properties of polymers with a low degree of crystallinity. Yet, our ability to probe these relevant features is often greatly limited by their low contrast differences with the amorphous phase. We present an approach to reveal the organization of the mesomorphic superstructures within such polymeric materials, on the example of electrospun poly(l-lactide) nanofibers. Based on solvent-induced crystallization, this method employs fine-tuned solvent/non-solvent systems to enhance the contrast of these structural features by selectively triggering and controlling reorganization of the phases. Hereby, the mesomorphic regions are transformed into an α-crystalline phase, while the nanoscale spatial arrangement of the underlying superstructures is preserved. Combined with X-ray analytical techniques and electron microscopy, our approach provides detailed insights into the nanofiber's inner architecture, allowing for its direct visualization. Thereby, the influence of electrospinning parameters on the fiber formation process is explained as well as the impact of the resulting non-crystalline superstructures on single fiber mechanical properties. The method can be applied to comparable polymers for the development of materials with controlled, tailored properties.

20.
Nanoscale ; 11(15): 7176-7187, 2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30919869

RESUMO

A dedicated nanofiber design for applications in the biomedical domain is based on the understanding of nanofiber structures. The structure of electrospun nanofibers strongly influences their properties and functionalities. In polymeric nanofibers X-ray scattering and diffraction methods, i.e. SAXS and WAXD, are capable of decoding their structural insights from about 100 nm down to the Angström scale. Here, we present a comprehensive X-ray scattering and diffraction based study and introduce new data analysis approaches to unveil detailed structural features in electrospun poly(vinylidene fluoride-co-hexafluoropropylene) (PVDFhfp) nanofiber membranes. Particular emphasis was placed on anisotropic morphologies being developed during the nanofiber fabrication process. Global analysis was performed on SAXS data to derive the nanofibrillar structure of repeating lamella crystalline domains with average dimensions of 12.5 nm thickness and 7.8 nm spacing along with associated tie-molecules. The varying surface roughness of the nanofiber was evaluated by extracting the Porod exponent in parallel and perpendicular direction to the nanofiber axis, which was further validated by Atomic Force Microscopy. Additionally, the presence of a mixture of the monoclinic alpha and the orthorhombic beta PVDFhfp phases both exhibiting about 6% larger unit cells compared to the corresponding pure PVDF phases was derived from WAXD. The current study shows a generic approach in detailed understanding of internal structures and surface morphology for nanofibers. This forms the basis for targeted structure and morphology steering and the respective controlling during the fabrication process with the aim to engineer nanofibers for different biomedical applications with specific requirements.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa