Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 142(12): 124313, 2015 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-25833585

RESUMO

The circular and linear magnetic birefringences corresponding to the Faraday and the Cotton-Mouton effects, respectively, have been measured in xenon at λ = 1064 nm. The experimental setup is based on time dependent magnetic fields and a high finesse Fabry-Pérot cavity. Our value of the Faraday effect is the first measurement at this wavelength. It is compared to theoretical predictions. Our uncertainty of a few percent yields an agreement at better than 1σ with the computational estimate when relativistic effects are taken into account. Concerning the Cotton-Mouton effect, our measurement, the second ever published at λ = 1064 nm, agrees at better than 1σ with theoretical predictions. We also compare our error budget with that established for other experimental published values.

2.
Opt Lett ; 32(13): 1812-4, 2007 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-17603578

RESUMO

We report what we believe to be the first accuracy evaluation of an optical lattice clock based on the S01-->P03 transition of an alkaline earth boson, namely, Sr88 atoms. This transition has been enabled by using a static coupling magnetic field. The clock frequency is determined to be 429228066418009(32)Hz. The isotopic shift between Sr87 and Sr88 is 62188135Hz with fractional uncertainty 5x10(-7). We discuss the necessary conditions to reach a clock accuracy of 10(-17) or less by using this scheme.

3.
Phys Rev Lett ; 96(10): 103003, 2006 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-16605730

RESUMO

We report the observation of a higher-order frequency shift due to the trapping field in a (87)Sr optical lattice clock. We show that, at the magic wavelength of the lattice, where the first-order term cancels, the higher-order shift will not constitute a limitation to the fractional accuracy of the clock at a level of 10(-18). This result is achieved by operating the clock at very high trapping intensity up to 400 kW/cm(2) and by a specific study of the effect of the two two-photon transitions near the magic wavelength.

4.
Phys Rev Lett ; 97(13): 130801, 2006 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-17026019

RESUMO

We report a frequency measurement of the 1S0-3P0 transition of 87Sr atoms in an optical lattice clock. The frequency is determined to be 429 228 004 229 879(5) Hz with a fractional uncertainty that is comparable to state-of-the-art optical clocks with neutral atoms in free fall. The two previous measurements of this transition were found to disagree by about 2 x 10(-13), i.e., almost 4 times the combined error bar and 4 to 5 orders of magnitude larger than the claimed ultimate accuracy of this new type of clocks. Our measurement is in agreement with one of these two values and essentially resolves this discrepancy.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa