Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bull Environ Contam Toxicol ; 112(3): 40, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38381199

RESUMO

In soil, chromium can be found in two main valence forms: hexavalent Cr (VI) and trivalent Cr (III). In terms of toxicity, the most toxic form to plants is Cr (VI). In the present study, we investigated the impact of Cr (VI) (0, 25, 50, 75 and 100 ppm) on growth, physiological parameters and the translocation kinetics of Cr (VI) in the faba bean plant (Vicia faba L.). The results showed that Cr (VI) negatively affects growth parameters (- 15% to - 72%), tolerance index (- 34.05% to - 64.7%), and reduce the total chlorophyll content (until 40%) compared to control plants without Cr (VI). However, the increase of Cr (VI) concentration in the soil, stimulated the synthesis of sugars (max 6,97 mg/g FM), proteins (max 62.89 µg/mg FM) and proline (max 98.57 µg/mg FM) and increased the electrolyte leakage (+ 2.5% to + 9%) compared to control plants. Cr (VI) concentrations in shoots and roots increased significantly for all Cr (VI) doses applied. The translocation factor results showed that the majority of the Cr (VI) absorbed by the plant is stored in the roots, with a very low bioaccumulation factor, which does not exceed 0.4. The findings show that Cr (VI) negatively affects the morpho-physiological parameters of Vicia faba, the bioaccumulation of organic solutes and the low bioaccumulation factor of Cr (VI) can be considered as a strategy of tolerance to Cr(V).


Assuntos
Vicia faba , Cromo/toxicidade , Bioacumulação , Clorofila , Solo
2.
Plant Physiol Biochem ; 207: 108361, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38237423

RESUMO

Like other heavy metals, Cr (VI) is a powerful carcinogen and mutagen agent. Its toxic effects on plants are well considered. In order to elucidate its adverse effects, the present work aims to study the mitosis aberrations of Cr (VI) on the Vicia faba root-cells and its molecular docking analysis to understand the genotoxicity mechanisms. In-vivo, Vicia faba plants were exposed to 50 and 100 µM Cr (VI) for 48 h. In-silico, molecular docking and molecular dynamics simulation were used to study the interactions between dichromate and tubulin tyrosine ligase T2R-TTL (PDBID: 5XIW) with reference to Colchicine (microtubule inhibitor). According to our results, Cr (VI) affects growth and cell division and also induces many mitosis aberrations such as chromosome sticking, anaphase/telophase bridges, lagging chromosomes and fragmentation during all phases of mitosis. On the one hand, Cr (VI) reduces mitotic index and promotes micronuclei induction. The in-silico results showed that dichromate establishes very strong bonds at the binding site of the tubulin tyrosine ligase T2R-TTL, with a binding affinity of -5.17 Kcal/Mol and an inhibition constant of 163.59 µM. These interactions are similar to those of colchicine with this protein, so dichromate could be a very potent inhibitor of this protein's activity. TTL plays a fundamental role in the tyrosination/detyrosination of tubulin, which is crucial to the regulation of the microtubule cytoskeleton. Its inhibition leads to the appearance of many morphogenic abnormalities such as mitosis aberrations. In conclusion, our data confirm the highest genotoxicity effects of Cr (VI) on Vicia faba root-cells.


Assuntos
Fabaceae , Vicia faba , Vicia faba/genética , Simulação de Acoplamento Molecular , Tubulina (Proteína)/genética , Tubulina (Proteína)/farmacologia , Cromo/toxicidade , Mitose , Dano ao DNA , Colchicina/farmacologia , Tirosina , Ligases , Aberrações Cromossômicas
3.
Bioinformation ; 19(12): 1217-1224, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38250527

RESUMO

The geographical location of Morocco and the diversity of its topography ensure a high variability of climate conditions, ranging from humid to Saharan, and extending through subhumid, arid, and semi-arid stages. This variability offers a high floristic diversity, while the medical use of these phytochemicals has not been fully explored. Advanced computer-aided drug discovery utilizes chemical biology to accelerate the study of phytochemicals at the molecular level and discover novel therapeutic pathways. Currently, there is no online resource for phytochemicals in Morocco. Therefore, it is of interest to describe the Moroccan Phytochemicals Database (MPDB), accessible, featuring over 600 phytochemicals derived from journal articles and other reports. The web interface of the database, which is simple and easy to use, provides each phytochemical's reference, plant sources, 3D structures, and all related information. Furthermore, we provide direct links to commercially available analogs from Mcule. In addition, we provide the results of the first virtual screening against cardiovascular targets. We present these data to facilitate further exploration and exploitation of Morocco's rich phytochemical resources, and to contribute to the global understanding and application of these compounds in the medical and scientific communities.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa