Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Dev Dyn ; 243(7): 894-905, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24633789

RESUMO

BACKGROUND: Valvuloseptal defects are the most common congenital heart defects. Notch signaling-induced endothelial-to-mesenchymal transition (EMT) in the atrioventricular canal (AVC) cushions at murine embryonic day (E)9.5 is a required step during early valve development. Insights to the transcriptional network that is activated in endocardial cells (EC) during EMT and how these pathways direct valve maturation are lacking. RESULTS: We show that at E11.5, AVC-EC retain the ability to undergo Notch-dependent EMT when explanted on collagen. EC-Notch inhibition at E10.5 blocks expression of known mesenchymal genes in E11.5 AVC-EC. To understand the genetic network and AVC development downstream of Notch signaling beyond E9.5, we constructed Tag-Seq libraries corresponding to different cell types of the E11.5 AVC and atrium in wild-type mice and in EC-Notch inhibited mice. We identified 1,400 potential Notch targets in the AVC-EC, of which 124 are transcription factors (TF). From the 124 TFs, we constructed a transcriptional hierarchy and identify 10 upstream TFs within the network. CONCLUSIONS: We validated 4 of the upstream TFs as Notch targets that are enriched in AVC-EC. Functionally, we show these 4 TFs regulate EMT in AVC explant assays. These novel signaling pathways downstream of Notch are potentially relevant to valve development.


Assuntos
Transdiferenciação Celular/genética , Coxins Endocárdicos/embriologia , Coxins Endocárdicos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Redes Reguladoras de Genes/genética , Receptores Notch/metabolismo , Animais , Linhagem Celular , Transdiferenciação Celular/fisiologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Redes Reguladoras de Genes/fisiologia , Humanos , Masculino , Camundongos , Gravidez , Receptores Notch/genética
2.
Front Genet ; 14: 1237092, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37576549

RESUMO

Transcription-factor binding to cis-regulatory regions regulates the gene expression program of a cell, but occupancy is often a poor predictor of the gene response. Here, we show that glucocorticoid stimulation led to the reorganization of transcriptional coregulators MED1 and BRD4 within topologically associating domains (TADs), resulting in active or repressive gene environments. Indeed, we observed a bias toward the activation or repression of a TAD when their activities were defined by the number of regions gaining and losing MED1 and BRD4 following dexamethasone (Dex) stimulation. Variations in Dex-responsive genes at the RNA levels were consistent with the redistribution of MED1 and BRD4 at the associated cis-regulatory regions. Interestingly, Dex-responsive genes without the differential recruitment of MED1 and BRD4 or binding by the glucocorticoid receptor were found within TADs, which gained or lost MED1 and BRD4, suggesting a role of the surrounding environment in gene regulation. However, the amplitude of the response of Dex-regulated genes was higher when the differential recruitment of the glucocorticoid receptor and transcriptional coregulators was observed, reaffirming the role of transcription factor-driven gene regulation and attributing a lesser role to the TAD environment. These results support a model where a signal-induced transcription factor induces a regionalized effect throughout the TAD, redefining the notion of direct and indirect effects of transcription factors on target genes.

3.
J Biol Chem ; 286(13): 11803-13, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21288908

RESUMO

Notch is a critical mediator of endothelial-to-mesenchymal transition (EndMT) during cardiac cushion development. Slug, a transcriptional repressor that is a Notch target, is an important Notch effector of EndMT in the cardiac cushion. Here, we report that the runt-related transcription factor RUNX3 is a novel direct Notch target in the endothelium. Ectopic expression of RUNX3 in endothelium induces Slug expression and EndMT independent of Notch activation. Interestingly, RUNX3 physically interacts with CSL, the Notch-interacting partner in the nucleus, and induces Slug in a CSL-dependent, but Notch-independent manner. Although RUNX3 may not be required for the initial induction of Slug and EndMT by Notch, because RUNX3 has a much longer half-life than Slug, it sustains the expression of Slug thereby maintaining the mesenchymal phenotype. CSL binds to the Runx3 promoter in the atrioventricular canal in vivo, and inhibition of Notch reduces RUNX3 expression in the cardiac cushion of embryonic hearts. Taken together, our results suggest that induction of RUNX3 may be a mechanism to maintain Notch-transformed mesenchymal cells during heart development.


Assuntos
Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Endotélio/embriologia , Transição Epitelial-Mesenquimal/fisiologia , Coração/embriologia , Mesoderma/metabolismo , Regiões Promotoras Genéticas/fisiologia , Receptores Notch/metabolismo , Linhagem Celular , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Meia-Vida , Humanos , Mesoderma/citologia , Organogênese/fisiologia , Receptores Notch/genética , Fatores de Transcrição da Família Snail , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética
4.
Sci Rep ; 6: 34962, 2016 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-27739523

RESUMO

Controlling the transcriptional program is essential to maintain the identity and the biological functions of a cell. The Mediator and Cohesin complexes have been established as central cofactors controlling the transcriptional program in normal cells. However, the distribution, recruitment and importance of these complexes in cancer cells have not been fully investigated. Here we show that FOXA and master transcription factors are part of the core transcriptional regulatory circuitry of cancer cells and are essential to recruit M ediator and Cohesin. Indeed, Mediator and Cohesin occupied the enhancer and promoter regions of actively transcribed genes and maintained the proliferation and colony forming potential. Through integration of publically available ChIP-Seq datasets, we predicted the core transcriptional regulatory circuitry of each cancer cell. Unexpectedly, for all cells investigated, the pioneer transcription factors FOXA1 and/or FOXA2 were identified in addition to cell-specific master transcription factors. Loss of both types of transcription factors phenocopied the loss of Mediator and Cohesin. Lastly, the master and pioneer transcription factors were essential to recruit Mediator and Cohesin to regulatory regions of actively transcribed genes. Our study proposes that maintenance of the cancer cell state is dependent on recruitment of Mediator and Cohesin through FOXA and master transcription factors.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Regulação Neoplásica da Expressão Gênica , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Complexo Mediador/metabolismo , Neoplasias/metabolismo , Células A549 , Proliferação de Células , Imunoprecipitação da Cromatina , Elementos Facilitadores Genéticos , Células Hep G2 , Humanos , Células MCF-7 , Análise de Componente Principal , Regiões Promotoras Genéticas , Transcrição Gênica , Coesinas
5.
J Exp Med ; 212(1): 37-52, 2015 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-25512468

RESUMO

Aberrant Notch activity is oncogenic in several malignancies, but it is unclear how expression or function of downstream elements in the Notch pathway affects tumor growth. Transcriptional regulation by Notch is dependent on interaction with the DNA-binding transcriptional repressor, RBPJ, and consequent derepression or activation of associated gene promoters. We show here that RBPJ is frequently depleted in human tumors. Depletion of RBPJ in human cancer cell lines xenografted into immunodeficient mice resulted in activation of canonical Notch target genes, and accelerated tumor growth secondary to reduced cell death. Global analysis of activated regions of the genome, as defined by differential acetylation of histone H4 (H4ac), revealed that the cell death pathway was significantly dysregulated in RBPJ-depleted tumors. Analysis of transcription factor binding data identified several transcriptional activators that bind promoters with differential H4ac in RBPJ-depleted cells. Functional studies demonstrated that NF-κB and MYC were essential for survival of RBPJ-depleted cells. Thus, loss of RBPJ derepresses target gene promoters, allowing Notch-independent activation by alternate transcription factors that promote tumorigenesis.


Assuntos
Carcinogênese/genética , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Neoplasias/genética , Receptores Notch/genética , Acetilação , Animais , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Histonas/metabolismo , Humanos , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mutação , NF-kappa B/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Regiões Promotoras Genéticas/genética , Ligação Proteica , Proteínas Proto-Oncogênicas c-myc/metabolismo , Interferência de RNA , Receptores Notch/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa