Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
RNA ; 29(3): 263-272, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36604112

RESUMO

The modern ribosome catalyzes all coded protein synthesis in extant organisms. It is likely that its core structure is a direct descendant from the ribosome present in the last common ancestor (LCA). Hence, its earliest origins likely predate the LCA and therefore date further back in time. Of special interest is the pseudosymmetrical region (SymR) that lies deep within the large subunit (LSU) where the peptidyl transfer reaction takes place. It was previously proposed that two RNA oligomers, representing the P- and A-regions of extant ribosomes dimerized to create a pore-like structure, which hosted the necessary properties that facilitate peptide bond formation. However, recent experimental studies show that this may not be the case. Instead, several RNA constructs derived exclusively from the P-region were shown to form a homodimer capable of peptide bond synthesis. Of special interest will be the origin issues because the homodimer would have allowed a pre-LCA ribosome that was significantly smaller than previously proposed. For the A-region, the immediate issue will likely be its origin and whether it enhances ribosome performance. Here, we reanalyze the RNA/RNA interaction regions that most likely lead to SymR formation in light of these recent findings. Further, it has been suggested that the ability of these RNA constructs to dimerize and enhance peptide bond formation is sequence-dependent. We have analyzed the implications of sequence variations as parts of functional and nonfunctional constructs.


Assuntos
Evolução Molecular , RNA , RNA/química , Ribossomos/metabolismo , Biossíntese de Proteínas , Peptídeos/genética , Peptídeos/metabolismo
2.
RNA ; 29(9): 1388-1399, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37263782

RESUMO

The ribosome is the universally conserved ribozyme that translates DNA coded instructions into proteins with the assistance of other RNA molecules, including transfer and messenger RNAs. Of particular interest is the segmentation phenomena, which is found in trypanosomatids and other protists. In these organisms, the large subunit ribosomal RNA is assembled from multiple smaller RNAs. This phenomenon posits several challenges to the folding and stabilization of such ribosomes to retain functionality and efficiency. In earlier studies, RNA/protein interactions were suggested to fully compensate for the fragmentation. Recently, several conserved RNA/RNA interaction regions were described in the cryo-EM structures of segmented ribosomes from trypanosomatids. These regions also seemed to aid in the folding and stabilization of such ribosomes, even before the ribosomal proteins start their association. In the present study, the existence of conserved RNA/RNA interaction regions shared between trypanosomatid and Euglena gracilis segmented ribosomes was confirmed, despite differences in segmentation patterns. Analysis of the crystallographic structures of unsegmented ribosomes from other Eukaryotes, Bacteria, and Archaea allowed us to estimate the relative age of highly conserved RNA/RNA interaction regions. These results strongly suggest that common interaction regions likely date far back into the ribosomes of the last common ancestor. Results also revealed that single hydrogen bonds are overwhelmingly facilitated by the 2'OH, a distinctive RNA feature. This supports the notion that RNA predates DNA and places some constraints on alternative nucleic acids proposals.


Assuntos
RNA , Ribossomos , RNA/metabolismo , Ribossomos/metabolismo , RNA Ribossômico/genética , Proteínas Ribossômicas/metabolismo , RNA Mensageiro/metabolismo
3.
RNA ; 28(3): 340-352, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34876487

RESUMO

The ribosome is the molecular factory that catalyzes all coded protein synthesis in extant organisms. Eukaryotic ribosomes are typically assembled out of four rRNAs; namely, 5S, 5.8S, 18S, and 28S. However, the 28S rRNA of some trypanosomatid organisms has been found to be segmented into six independent rRNAs of different sizes. The two largest segments have multiple sites where they jointly form stems comprised of standard base pairs that can hold them together. However, such regions of interaction are not observed among the four smaller RNAs. Early reports suggested that trypanosomatid segmented ribosome assembly was essentially achieved thanks to their association with rProteins. However, examination of cryo-EM ribosomal structures from Trypanosoma brucei, Leishmania donovani, and Trypanosoma cruzi reveals several long-range nonstandard RNA/RNA interactions. Most of these interactions are clusters of individual hydrogen bonds and so are not readily predictable. However, taken as a whole, they represent significant stabilizing energy that likely facilitates rRNA assembly and the overall stability of the segmented ribosomes. In the context of origin of life studies, the current results provide a better understanding of the true nature of RNA sequence space and what might be possible without an RNA replicase.


Assuntos
Dobramento de RNA , Estabilidade de RNA , RNA Ribossômico/metabolismo , Ribossomos/metabolismo , Leishmania donovani/genética , Leishmania donovani/metabolismo , RNA Ribossômico/química , Ribossomos/química , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Trypanosoma cruzi/genética , Trypanosoma cruzi/metabolismo
4.
Archaea ; 2023: 5512414, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38314098

RESUMO

It has been proposed that the superphylum of Asgard Archaea may represent a historical link between the Archaea and Eukarya. Following the discovery of the Archaea, it was soon appreciated that archaeal ribosomes were more similar to those of Eukarya rather than Bacteria. Coupled with other eukaryotic-like features, it has been suggested that the Asgard Archaea may be directly linked to eukaryotes. However, the genomes of Bacteria and non-Asgard Archaea generally organize ribosome-related genes into clusters that likely function as operons. In contrast, eukaryotes typically do not employ an operon strategy. To gain further insight into conservation of the r-protein genes, the genome order of conserved ribosomal protein (r-protein) coding genes was identified in 17 Asgard genomes (thirteen complete genomes and four genomes with less than 20 contigs) and compared with those found previously in non-Asgard archaeal and bacterial genomes. A universal core of two clusters of 14 and 4 cooccurring r-proteins, respectively, was identified in both the Asgard and non-Asgard Archaea. The equivalent genes in the E. coli version of the cluster are found in the S10 and spc operons. The large cluster of 14 r-protein genes (uS19-uL22-uS3-uL29-uS17 from the S10 operon and uL14-uL24-uL5-uS14-uS8-uL6-uL18-uS5-uL30-uL15 from the spc operon) occurs as a complete set in the genomes of thirteen Asgard genomes (five Lokiarchaeotes, three Heimdallarchaeotes, one Odinarchaeote, and four Thorarchaeotes). Four less conserved clusters with partial bacterial equivalents were found in the Asgard. These were the L30e (str operon in Bacteria) cluster, the L18e (alpha operon in Bacteria) cluster, the S24e-S27ae-rpoE1 cluster, and the L31e, L12..L1 cluster. Finally, a new cluster referred to as L7ae was identified. In many cases, r-protein gene clusters/operons are less conserved in their organization in the Asgard group than in other Archaea. If this is generally true for nonribosomal gene clusters, the results may have implications for the history of genome organization. In particular, there may have been an early transition to or from the operon approach to genome organization. Other nonribosomal cellular features may support different relationships. For this reason, it may be important to consider ribosome features separately.


Assuntos
Archaea , Proteínas Ribossômicas , Archaea/genética , Archaea/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Escherichia coli/genética , Bactérias/genética , Genoma Bacteriano , Filogenia
5.
RNA ; 27(2): 133-150, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33184227

RESUMO

The large ribosomal RNAs of eukaryotes frequently contain expansion sequences that add to the size of the rRNAs but do not affect their overall structural layout and are compatible with major ribosomal function as an mRNA translation machine. The expansion of prokaryotic ribosomal RNAs is much less explored. In order to obtain more insight into the structural variability of these conserved molecules, we herein report the results of a comprehensive search for the expansion sequences in prokaryotic 5S rRNAs. Overall, 89 expanded 5S rRNAs of 15 structural types were identified in 15 archaeal and 36 bacterial genomes. Expansion segments ranging in length from 13 to 109 residues were found to be distributed among 17 insertion sites. The strains harboring the expanded 5S rRNAs belong to the bacterial orders Clostridiales, Halanaerobiales, Thermoanaerobacterales, and Alteromonadales as well as the archael order Halobacterales When several copies of a 5S rRNA gene are present in a genome, the expanded versions may coexist with normal 5S rRNA genes. The insertion sequences are typically capable of forming extended helices, which do not seemingly interfere with folding of the conserved core. The expanded 5S rRNAs have largely been overlooked in 5S rRNA databases.


Assuntos
Genoma Arqueal , Genoma Bacteriano , RNA Arqueal/genética , RNA Bacteriano/genética , RNA Ribossômico 5S/genética , Alteromonadaceae/classificação , Alteromonadaceae/genética , Alteromonadaceae/metabolismo , Pareamento de Bases , Sequência de Bases , Clostridiales/classificação , Clostridiales/genética , Clostridiales/metabolismo , Firmicutes/classificação , Firmicutes/genética , Firmicutes/metabolismo , Halobacteriales/classificação , Halobacteriales/genética , Halobacteriales/metabolismo , Conformação de Ácido Nucleico , Filogenia , RNA Arqueal/química , RNA Arqueal/metabolismo , RNA Bacteriano/química , RNA Bacteriano/metabolismo , RNA Ribossômico 5S/química , RNA Ribossômico 5S/metabolismo , Thermoanaerobacterium/classificação , Thermoanaerobacterium/genética , Thermoanaerobacterium/metabolismo
6.
J Mol Evol ; 86(5): 264-276, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29748740

RESUMO

It is generally considered that if an RNA World ever existed that it would be driven by an RNA capable of RNA replication. Whether such a catalytic RNA could emerge in an RNA World or not, there would need to be prior routes to increasing complexity in order to produce it. It is hypothesized here that increasing sequence variety, if not complexity, can in fact readily emerge in response to a dynamic equilibrium between synthesis and degradation. A model system in which T4 RNA ligase catalyzes synthesis and Benzonase catalyzes degradation was constructed. An initial 20-mer served as a seed and was subjected to 180 min of simultaneous ligation and degradation. The seed RNA rapidly disappeared and was replaced by an increasing number and variety of both larger and smaller variants. Variants of 40-80 residues were consistently seen, typically representing 2-4% of the unique sequences. In a second experiment with four individual 9-mers, numerous variants were again produced. These included variants of the individual 9-mers as well as sequences that contained sequence segments from two or more 9-mers. In both cases, the RNA products lack large numbers of point mutations but instead incorporate additions and subtractions of fragments of the original RNAs. The system demonstrates that if such equilibrium were established in a prebiotic world it would result in significant exploration of RNA sequence space and likely increased complexity. It remains to be seen if the variety of products produced is affected by the presence of small peptide oligomers.


Assuntos
RNA Polimerase Dependente de RNA/metabolismo , RNA/genética , Composição de Bases/genética , Sequência de Bases , Nucleotídeos/genética
7.
BMC Microbiol ; 18(1): 57, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29884123

RESUMO

BACKGROUND: Bacillus strains producing highly resistant spores have been isolated from cleanrooms and space craft assembly facilities. Organisms that can survive such conditions merit planetary protection concern and if that resistance can be transferred to other organisms, a health concern too. To further efforts to understand these resistances, the complete genome of Bacillus safensis strain FO-36b, which produces spores resistant to peroxide and radiation was determined. The genome was compared to the complete genome of B. pumilus SAFR-032, and the draft genomes of B. safensis JPL-MERTA-8-2 and the type strain B. pumilus ATCC7061T. Additional comparisons were made to 61 draft genomes that have been mostly identified as strains of B. pumilus or B. safensis. RESULTS: The FO-36b gene order is essentially the same as that in SAFR-032 and other B. pumilus strains. The annotated genome has 3850 open reading frames and 40 noncoding RNAs and riboswitches. Of these, 307 are not shared by SAFR-032, and 65 are also not shared by MERTA and ATCC7061T. The FO-36b genome has ten unique open reading frames and two phage-like regions, homologous to the Bacillus bacteriophage SPP1 and Brevibacillus phage Jimmer1. Differing remnants of the Jimmer1 phage are found in essentially all B. safensis / B. pumilus strains. Seven unique genes are part of these phage elements. Whole Genome Phylogenetic Analysis of the B. pumilus, B. safensis and other Firmicutes genomes, separate them into three distinct clusters. Two clusters are subgroups of B. pumilus while one houses all the B. safensis strains. The Genome-genome distance analysis and a phylogenetic analysis of gyrA sequences corroborated these results. CONCLUSIONS: It is not immediately obvious that the presence or absence of any specific gene or combination of genes is responsible for the variations in resistance seen. It is quite possible that distinctions in gene regulation can alter the expression levels of key proteins thereby changing the organism's resistance properties without gain or loss of a particular gene. What is clear is that phage elements contribute significantly to genome variability. Multiple genome comparison indicates that many strains named as B. pumilus likely belong to the B. safensis group.


Assuntos
Bacillus/genética , Genoma Bacteriano , Análise de Sequência de DNA/métodos , Esporos Bacterianos/isolamento & purificação , Bacillus/classificação , Bacillus pumilus/genética , Proteínas de Bactérias/genética , DNA Girase/genética , Ordem dos Genes , Anotação de Sequência Molecular , Fases de Leitura Aberta , Filogenia , Astronave , Esporos Bacterianos/classificação , Esporos Bacterianos/genética
8.
Proc Natl Acad Sci U S A ; 112(50): 15396-401, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26621738

RESUMO

We present a molecular-level model for the origin and evolution of the translation system, using a 3D comparative method. In this model, the ribosome evolved by accretion, recursively adding expansion segments, iteratively growing, subsuming, and freezing the rRNA. Functions of expansion segments in the ancestral ribosome are assigned by correspondence with their functions in the extant ribosome. The model explains the evolution of the large ribosomal subunit, the small ribosomal subunit, tRNA, and mRNA. Prokaryotic ribosomes evolved in six phases, sequentially acquiring capabilities for RNA folding, catalysis, subunit association, correlated evolution, decoding, energy-driven translocation, and surface proteinization. Two additional phases exclusive to eukaryotes led to tentacle-like rRNA expansions. In this model, ribosomal proteinization was a driving force for the broad adoption of proteins in other biological processes. The exit tunnel was clearly a central theme of all phases of ribosomal evolution and was continuously extended and rigidified. In the primitive noncoding ribosome, proto-mRNA and the small ribosomal subunit acted as cofactors, positioning the activated ends of tRNAs within the peptidyl transferase center. This association linked the evolution of the large and small ribosomal subunits, proto-mRNA, and tRNA.


Assuntos
Evolução Molecular , Biossíntese de Proteínas , Ribossomos/metabolismo , Biocatálise , Escherichia coli/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico , RNA Mensageiro/metabolismo , RNA Ribossômico/química , RNA Ribossômico/metabolismo , RNA de Transferência/química , RNA de Transferência/metabolismo , Subunidades Ribossômicas/metabolismo
9.
Nat Methods ; 11(4): 413-6, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24584194

RESUMO

Structured noncoding RNAs underlie fundamental cellular processes, but determining their three-dimensional structures remains challenging. We demonstrate that integrating ¹H NMR chemical shift data with Rosetta de novo modeling can be used to consistently determine high-resolution RNA structures. On a benchmark set of 23 noncanonical RNA motifs, including 11 'blind' targets, chemical-shift Rosetta for RNA (CS-Rosetta-RNA) recovered experimental structures with high accuracy (0.6-2.0 Å all-heavy-atom r.m.s. deviation) in 18 cases.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Motivos de Nucleotídeos , RNA não Traduzido/química , Animais
10.
Nucleic Acids Res ; 43(9): 4640-9, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25870411

RESUMO

Major centers of motion in the rRNAs of Thermus thermophilus are identified by alignment of crystal structures of EF-G bound and EF-G unbound ribosomal subunits. Small rigid helices upstream of these 'pivots' are aligned, thereby decoupling their motion from global rearrangements. Of the 21 pivots found, six are observed in the large subunit rRNA and 15 in the small subunit rRNA. Although the magnitudes of motion differ, with only minor exceptions equivalent pivots are seen in comparisons of Escherichia coli structures and one Saccharomyces cerevisiae structure pair. The pivoting positions are typically associated with structurally weak motifs such as non-canonical, primarily U-G pairs, bulge loops and three-way junctions. Each pivot is typically in direct physical contact with at least one other in the set and often several others. Moving helixes include rRNA segments in contact with the tRNA, intersubunit bridges and helices 28, 32 and 34 of the small subunit. These helices are envisioned to form a network. EF-G rearrangement would then provide directional control of this network propagating motion from the tRNA to the intersubunit bridges to the head swivel or along the same path backward.


Assuntos
RNA Ribossômico/química , Escherichia coli/genética , Movimento (Física) , Conformação de Ácido Nucleico , RNA Ribossômico 16S/química , RNA Ribossômico 23S/química , Saccharomyces cerevisiae/genética , Thermus thermophilus/genética
11.
Proc Natl Acad Sci U S A ; 111(28): 10251-6, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24982194

RESUMO

The origins and evolution of the ribosome, 3-4 billion years ago, remain imprinted in the biochemistry of extant life and in the structure of the ribosome. Processes of ribosomal RNA (rRNA) expansion can be "observed" by comparing 3D rRNA structures of bacteria (small), yeast (medium), and metazoans (large). rRNA size correlates well with species complexity. Differences in ribosomes across species reveal that rRNA expansion segments have been added to rRNAs without perturbing the preexisting core. Here we show that rRNA growth occurs by a limited number of processes that include inserting a branch helix onto a preexisting trunk helix and elongation of a helix. rRNA expansions can leave distinctive atomic resolution fingerprints, which we call "insertion fingerprints." Observation of insertion fingerprints in the ribosomal common core allows identification of probable ancestral expansion segments. Conceptually reversing these expansions allows extrapolation backward in time to generate models of primordial ribosomes. The approach presented here provides insight to the structure of pre-last universal common ancestor rRNAs and the subsequent expansions that shaped the peptidyl transferase center and the conserved core. We infer distinct phases of ribosomal evolution through which ribosomal particles evolve, acquiring coding and translocation, and extending and elaborating the exit tunnel.


Assuntos
Evolução Molecular , Filogenia , RNA Ribossômico/química , RNA Ribossômico/genética , Ribossomos/química , Ribossomos/genética , Animais , Archaea/química , Archaea/genética , Bactérias/química , Bactérias/genética , Fungos/química , Fungos/genética , Humanos , Estrutura Molecular , RNA Arqueal/química , RNA Arqueal/genética , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Fúngico/química , RNA Fúngico/genética , RNA de Protozoário/química , RNA de Protozoário/genética
12.
RNA Biol ; 13(5): 524-30, 2016 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-26786136

RESUMO

Structural centers of motion (pivot points) in the ribosome have recently been identified by measurement of conformational changes in rRNA resulting from EF-G GTP hydrolysis. This series of measurements is extended here to the ribosome's interactions with the cofactor EF-Tu. Four recent EF-Tu bound ribosome structures were compared to unbound structures. A total of 16 pivots were identified, of which 4 are unique to the EF-Tu interaction. Pivots in the GTPase associated center and the sarcin-ricin loop omitted previously, are found to be mobile in response to both EF-Tu and EF-G binding. Pivots in the intersubunit bridge rRNAs are found to be cofactor specific. Head swiveling motions in the small subunit are observed in the EF-Tu bound structures that were trapped post GTP hydrolysis. As in the case of pivots associated with EF-G, the additional pivots described here are associated with weak points in the rRNA structures such as non-canonical pairs and bulge loops. The combined set of pivots should be regarded as a minimal set. Only several states available to the ribosome have been presented in this work. Future, precise crystal structures in conjunction with experimental data will likely show additional functional pivoting elements in the rRNA.


Assuntos
Fator Tu de Elongação de Peptídeos/metabolismo , Ribossomos/química , Ribossomos/metabolismo , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Modelos Moleculares , Ligação Proteica , Estrutura Secundária de Proteína , RNA Ribossômico/química , RNA Ribossômico/metabolismo
13.
RNA ; 19(10): 1349-54, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23940386

RESUMO

The highly conserved peptidyl transferase center (PTC) of the ribosome contains an RNA pore that serves as the entrance to the exit tunnel. Analysis of available ribosome crystal structures has revealed the presence of multiple additional well-defined pores of comparable size in the ribosomal (rRNA) RNAs. These typically have dimensions of 1-2 nm, with a total area of ∼100 Å(2) or more, and most are associated with one or more ribosomal proteins. The PTC example and the other rRNA pores result from the packing of helices. However, in the non-PTC cases the nitrogenous bases do not protrude into the pore, thereby limiting the potential for hydrogen bonding within the pore. Instead, it is the RNA backbone that largely defines the pore likely resulting in a negatively charged environment. In many but not all cases, ribosomal proteins are associated with the pores to a greater or lesser extent. With the exception of the PTC case, the large subunit pores are not found in what are thought to be the evolutionarily oldest regions of the 23S rRNA. The unusual nature of the PTC pore may reflect a history of being created by hybridization between two or more RNAs early in evolution rather than simple folding of a single RNA. An initial survey of nonribosomal RNA crystal structures revealed additional pores, thereby showing that they are likely a general feature of RNA tertiary structure.


Assuntos
Nanoestruturas/química , Peptidil Transferases/metabolismo , RNA Ribossômico 16S/química , RNA Ribossômico 23S/química , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Sítios de Ligação , Modelos Moleculares , Conformação de Ácido Nucleico , Peptidil Transferases/química , RNA Ribossômico 16S/metabolismo , Proteínas Ribossômicas/química , Ribossomos/química , Thermus thermophilus/genética , Thermus thermophilus/metabolismo
14.
Nucleic Acids Res ; 41(15): 7522-35, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23771137

RESUMO

We present a de novo re-determination of the secondary (2°) structure and domain architecture of the 23S and 5S rRNAs, using 3D structures, determined by X-ray diffraction, as input. In the traditional 2° structure, the center of the 23S rRNA is an extended single strand, which in 3D is seen to be compact and double helical. Accurately assigning nucleotides to helices compels a revision of the 23S rRNA 2° structure. Unlike the traditional 2° structure, the revised 2° structure of the 23S rRNA shows architectural similarity with the 16S rRNA. The revised 2° structure also reveals a clear relationship with the 3D structure and is generalizable to rRNAs of other species from all three domains of life. The 2° structure revision required us to reconsider the domain architecture. We partitioned the 23S rRNA into domains through analysis of molecular interactions, calculations of 2D folding propensities and compactness. The best domain model for the 23S rRNA contains seven domains, not six as previously ascribed. Domain 0 forms the core of the 23S rRNA, to which the other six domains are rooted. Editable 2° structures mapped with various data are provided (http://apollo.chemistry.gatech.edu/RibosomeGallery).


Assuntos
Escherichia coli/genética , RNA Bacteriano/química , RNA Ribossômico 23S/química , RNA Ribossômico 5S/química , Pareamento de Bases , Sequência de Bases , Escherichia coli/química , Evolução Molecular , Conformação de Ácido Nucleico , Filogenia , Dobramento de RNA , Estabilidade de RNA , RNA Bacteriano/genética , Ribossomos/química , Ribossomos/genética , Relação Estrutura-Atividade
15.
BMC Microbiol ; 14: 225, 2014 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-25194715

RESUMO

BACKGROUND: Perchlorate contamination has been detected in both ground water and drinking water. An attractive treatment option is the use of ion-exchange to remove and concentrate perchlorate in brine. Biological treatment can subsequently remove the perchlorate from the brine. When nitrate is present, it will also be concentrated in the brine and must also be removed by biological treatment. The primary objective was to obtain an in-depth characterization of the microbial populations of two salt-tolerant cultures each of which is capable of metabolizing perchlorate. The cultures were derived from a single ancestral culture and have been maintained in the laboratory for more than 10 years. One culture was fed perchlorate only, while the other was fed both perchlorate and nitrate. RESULTS: A metagenomic characterization was performed using Illumina DNA sequencing technology, and the 16S rDNA of several pure strains isolated from the mixed cultures were sequenced. In the absence of nitrate, members of the Rhodobacteraceae constituted the prevailing taxonomic group. Second in abundance were the Rhodocyclaceae. In the nitrate fed culture, the Rhodobacteraceae are essentially absent. They are replaced by a major expansion of the Rhodocyclaceae and the emergence of the Alteromonadaceae as a significant community member. Gene sequences exhibiting significant homology to known perchlorate and nitrate reduction enzymes were found in both cultures. CONCLUSIONS: The structure of the two microbial ecosystems of interest has been established and some representative strains obtained in pure culture. The results illustrate that under favorable conditions a group of organisms can readily dominate an ecosystem and yet be effectively eliminated when their advantage is lost. Almost all known perchlorate-reducing organisms can also effectively reduce nitrate. This is certainly not the case for the Rhodobacteraceae that were found to dominate in the absence of nitrate, but effectively disappeared in its presence. This study is significant in that it reveals the existence of a novel group of organisms that play a role in the reduction of perchlorate under saline conditions. These Rhodobacteraceae especially, as well as other organisms present in these communities may be a promising source of unique salt-tolerant enzymes for perchlorate reduction.


Assuntos
Reatores Biológicos/microbiologia , Nitratos/metabolismo , Percloratos/metabolismo , Rhodobacteraceae/metabolismo , Rhodocyclaceae/metabolismo , Cloreto de Sódio/metabolismo , Sequência de Bases , Biodegradação Ambiental , Troca Iônica , Metagenoma/genética , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Rhodobacteraceae/genética , Rhodocyclaceae/genética , Sais/metabolismo
16.
Extremophiles ; 17(5): 767-74, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23812891

RESUMO

Comparisons of the genomes of Bacillus pumilus SAFR-032 and the closely related type strain, B. pumilus ATCC7061(T), exposed an extended region of non-homologous genes. A detailed examination of this region revealed the presence of an ICEBs1-like integrative conjugative element in SAFR-032. A similar element was subsequently located elsewhere in the ATCC7061(T) genome. A detailed comparison of these elements and the ICEBs1 of B. subtilis revealed extremely rapid flux in gene content, genome organization and sequence similarity. It is not clear if the B. pumilus elements as they are currently structured are functional. However, it is clear that the past involvement of these elements has brought multiple genes of unknown function to the SAFR-032 genome and these genes may be responsible for the rapid evolution that led to the extreme radiation and desiccation resistance of this organism's spores.


Assuntos
Bacillus/genética , Tolerância a Radiação/genética , Evolução Molecular , Genoma Bacteriano , Retroelementos/genética
17.
Mol Biol Evol ; 28(9): 2629-36, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21470967

RESUMO

A portion of the 5S ribosomal RNA (rRNA) structure space in the vicinity of the Vibrio proteolyticus 5S rRNA sequence is explored in detail with the intention of establishing principles that will allow a priori prediction of which sequences would be valid members of a particular RNA structure space. Four hundred and one sequence variants differing from the V. proteolyticus 5S rRNA wild-type sequence in 1-7 positions were characterized using an in vivo assay system. Most significantly, it was found that in general, the phenotypic effects of single changes were independent of the phenotypic effect of a second change. As a result, it was possible to use the new data in conjunction with results from prior studies of the same RNA to develop "truth tables" to predict which multiple change variants would be functional and which would be nonfunctional. The actual phenotype of 93.8% of the multichange variants studied was consistent with the predictions made using truth tables thereby providing for perhaps the first time an upper limit estimate of how frequent unexpected interactions are. It was also observed that single changes at positions involved in secondary structure were no more likely to be invalid than changes in other regions. In particular, internal changes in long standard stems were in fact almost always tolerated. Changes at positions that were hypervariable in the context of an alignment of related sequences were, as expected, usually found to be valid. However, the potential validity of changes that were idiosyncratic to a single lineage of related sequences when placed in the V. proteolyticus 5S rRNA context was unpredictable.


Assuntos
Conformação de Ácido Nucleico , RNA Ribossômico 5S/genética , Relação Estrutura-Atividade , Vibrio/genética , Evolução Molecular , Mutagênese , Fenótipo , Mutação Puntual/genética , Vibrio/crescimento & desenvolvimento
18.
Anal Biochem ; 421(1): 81-5, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22155054

RESUMO

Nucleic acid detection by polymerase chain reaction (PCR) is invaluable for the detection of dilute and rare sequences, including pathogens and infrequent species in complex clinical and environmental backgrounds. The presence of excess complex background nucleic acid can reduce sensitivity and specificity. This is because mispriming can cause failure of the amplification reaction. Here we describe a new approach to ultrasensitive PCR detection, using enrichment of rare target nucleic acid from abundant background by combining the classic technique of cot-rehybridization to convert the abundant background to double-stranded form, with the use of a newly described, highly processive duplex-specific crab nuclease. We show that trace sequences in a vast excess of background DNA can be undetectable by PCR, independent of the amount of the mixture added to the PCR, and that these sequences can be made detectable by background suppression using this method.


Assuntos
Desoxirribonucleases , Ácidos Nucleicos/análise , Ácidos Nucleicos/genética , Reação em Cadeia da Polimerase/métodos , Animais , Anomuros/enzimologia , Cromatografia , DNA Viral/análise , DNA Viral/genética , Vírus da Dengue/genética , Durapatita , Hibridização de Ácido Nucleico/métodos , Reação em Cadeia da Polimerase/estatística & dados numéricos , Sensibilidade e Especificidade
19.
BMC Evol Biol ; 11: 218, 2011 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-21781330

RESUMO

BACKGROUND: In addition to providing phylogenetic relationships, tree making procedures such as parsimony and maximum likelihood can make specific predictions of actual historical sequences. Resurrection of such sequences can be used to understand early events in evolution. In the case of RNA, the nature of parsimony is such that when applied to multiple RNA sequences it typically predicts ancestral sequences that satisfy the base pairing constraints associated with secondary structure. The case for such sequences being actual ancestors is greatly improved, if they can be shown to be biologically functional. RESULTS: A unique common ancestral sequence of 28 Vibrio 5S ribosomal RNA sequences predicted by parsimony was resurrected and found to be functional in the context of the E. coli cellular environment. The functionality of various point variants and intermediates that were constructed as part of the resurrection were examined in detail. When separately introduced the changes at single stranded positions and individual double variants at base-paired positions were also viable. An additional double variant was examined at a different base-paired position and it was also valid. CONCLUSIONS: The results show that at least in the case of the 5S rRNAs considered here, ancestors predicted by parsimony are likely to be realistic when the prediction is not overly influenced by single outliers. It is especially noteworthy that the phenotype of the predicted ancestors could be anticipated as a cumulative consequence of the phenotypes of the individual variants that comprised them. Thus, point mutation data is potentially useful in evaluating the reasonableness of ancestral sequences predicted by parsimony or other methods. The results also suggest that in the absence of significant tertiary structure constraints double variants that preserve pairing in stem regions will typically be accepted. Overall, the results suggest that it will be feasible to resurrect additional meaningful 5S rRNA ancestors as well as ancestral sequences of many different types of RNA.


Assuntos
Escherichia coli/genética , Evolução Molecular , RNA Bacteriano/genética , RNA Ribossômico 5S/genética , Vibrio/genética , Sequência de Bases , Escherichia coli/química , Escherichia coli/classificação , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Filogenia , RNA Bacteriano/química , RNA Ribossômico 5S/química , Vibrio/química , Vibrio/classificação
20.
Microb Ecol ; 61(3): 669-75, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21113709

RESUMO

A comparison of variable regions within the 16S rRNA gene is widely used to characterize relationships between bacteria and to identify phylogenetic affiliation of unknown bacteria. In environmental studies, polymerase chain reaction amplification of 16S rRNA followed by cloning and sequencing of numerous individual clones is an extensively used molecular method for elucidating microbial diversity. The sequencing process typically utilizes a forward and reverse primer pair to produce two partial reads (~700 to 800 base pairs each) that overlap and in total cover a large region of the full 16S rRNA sequence (~1.5 k base). In a typical application, this approach rapidly generates very large numbers of 16S rRNA datasets that can overwhelm manual processing efforts leading to both delays and errors. In particular, the approach presents two computational challenges: (1) the assembly of a composite sequence from the two partial reads and (2) the subsequent appropriate identification of the organism represented by the newly sequenced clones. Herein, we describe a software package, search, trim, identify, track, and capture the uniqueness of 16S rRNAs using public and in-house database (STITCH), which offers automated sequence pair splicing and genetic identification, thus simplifying the computationally intensive analysis of large sequencing libraries. The STITCH software is freely accessible over the Internet at: http://prion.bchs.uh.edu/stitch/.


Assuntos
Algoritmos , Biologia Computacional/métodos , Bases de Dados de Ácidos Nucleicos , RNA Ribossômico 16S/genética , Análise de Sequência de RNA/métodos , Bactérias/classificação , Bactérias/genética , Splicing de RNA , Software , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa