Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Neurochem ; 142(2): 204-214, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28444767

RESUMO

Chronic insomnia is defined as a persistent difficulty with sleep initiation maintenance or non-restorative sleep. The therapeutic standard of care for this condition is treatment with gamma-aminobutyric acid (GABA)A receptor modulators, which promote sleep but are associated with a panoply of side effects, including cognitive and memory impairment. Dual orexin receptor antagonists (DORAs) have recently emerged as an alternative therapeutic approach that acts via a distinct and more selective wake-attenuating mechanism with the potential to be associated with milder side effects. Given their distinct mechanism of action, the current work tested the hypothesis that DORAs and GABAA receptor modulators differentially regulate neurochemical pathways associated with differences in sleep architecture and cognitive performance induced by these pharmacological mechanisms. Our findings showed that DORA-22 suppresses the release of the wake neurotransmitter histamine in the lateral hypothalamus, prefrontal cortex, and hippocampus with no significant alterations in acetylcholine levels. In contrast, eszopiclone, commonly used as a GABAA modulator, inhibited acetylcholine secretion across brain regions with variable effects on histamine release depending on the extent of wakefulness induction. In normal waking rats, eszopiclone only transiently suppressed histamine secretion, whereas this suppression was more obvious under caffeine-induced wakefulness. Compared with the GABAA modulator eszopiclone, DORA-22 elicits a neurotransmitter profile consistent with wake reduction that does not impinge on neurotransmitter levels associated with cognition and rapid eye movement sleep.


Assuntos
Acetilcolina/metabolismo , Hipocampo/efeitos dos fármacos , Histamina/metabolismo , Região Hipotalâmica Lateral/efeitos dos fármacos , Antagonistas dos Receptores de Orexina/farmacologia , Piperidinas/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Triazóis/farmacologia , Animais , Hipocampo/metabolismo , Masculino , Córtex Pré-Frontal/metabolismo , Ratos , Sono/efeitos dos fármacos , Sono/fisiologia , Distúrbios do Início e da Manutenção do Sono/fisiopatologia , Vigília/efeitos dos fármacos , Ácido gama-Aminobutírico/farmacologia
2.
Bioorg Med Chem Lett ; 27(6): 1364-1370, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28216403

RESUMO

In an ongoing effort to explore the use of orexin receptor antagonists for the treatment of insomnia, dual orexin receptor antagonists (DORAs) were structurally modified, resulting in compounds selective for the OX2R subtype and culminating in the discovery of 23, a highly potent, OX2R-selective molecule that exhibited a promising in vivo profile. Further structural modification led to an unexpected restoration of OX1R antagonism. Herein, these changes are discussed and a rationale for selectivity based on computational modeling is proposed.


Assuntos
Antagonistas dos Receptores de Orexina/farmacologia , Orexinas/antagonistas & inibidores , Animais , Eletroencefalografia , Eletromiografia , Estrutura Molecular , Antagonistas dos Receptores de Orexina/química , Ratos
3.
Bioorg Med Chem Lett ; 25(3): 444-50, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25577040

RESUMO

Highly selective orexin receptor antagonists (SORAs) of the orexin 2 receptor (OX2R) have become attractive targets both as potential therapeutics for insomnia as well as biological tools to help further elucidate the underlying pharmacology of the orexin signaling pathway. Herein, we describe the discovery of a novel piperidine ether 2-SORA class identified by systematic lead optimization beginning with filorexant, a dual orexin receptor antagonist (DORA) that recently completed Phase 2 clinical trials. Changes to the ether linkage and pendant heterocycle of filorexant were found to impart significant selectivity for OX2R, culminating in lead compound PE-6. PE-6 displays sub-nanomolar binding affinity and functional potency on OX2R while maintaining >1600-fold binding selectivity and >200-fold functional selectivity versus the orexin 1 receptor (OX1R). PE-6 bears a clean off-target profile, a good overall preclinical pharmacokinetic (PK) profile, and reduces wakefulness with increased NREM and REM sleep when evaluated in vivo in a rat sleep study. Importantly, subtle structural changes to the piperidine ether class impart dramatic changes in receptor selectivity. To this end, our laboratories have identified multiple piperidine ether 2-SORAs, 1-SORAs, and DORAs, providing access to a number of important biological tool compounds from a single structural class.


Assuntos
Éteres/química , Antagonistas dos Receptores de Orexina , Piperidinas/química , Pirimidinas/química , Animais , Cães , Avaliação Pré-Clínica de Medicamentos , Éteres/síntese química , Éteres/farmacocinética , Meia-Vida , Humanos , Receptores de Orexina/metabolismo , Piperidinas/metabolismo , Ligação Proteica , Pirimidinas/metabolismo , Ratos , Sono/efeitos dos fármacos , Relação Estrutura-Atividade
4.
Bioorg Med Chem Lett ; 25(21): 4992-4999, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25613676

RESUMO

Dual orexin receptor antagonists (DORAs), or orexin 1 (OX1) and orexin 2 (OX2) receptor antagonists, have demonstrated clinical utility for the treatment of insomnia. Medicinal chemistry efforts focused on the reduction of bioactivation potential of diazepane amide 1 through the modification of the Western heterocycle resulted in the discovery of suvorexant, a DORA recently approved by the FDA for the treatment of insomnia. A second strategy towards reducing bioactivation risk is presented herein through the exploration of monocyclic quinazoline isosteres, namely substituted pyrimidines. These studies afforded potent DORAs with significantly reduced bioactivation risk and efficacy in rodent sleep models. Surprisingly, side products from the chemistry used to produce these DORAs yielded isomeric pyrimidine-containing diazepane amides possessing selective OX2R antagonist (2-SORA) profiles. Additional exploration of these isomeric pyrimidines uncovered potent 2-SORA diazepane amides with sleep efficacy in mouse EEG studies.


Assuntos
Descoberta de Drogas , Antagonistas dos Receptores de Orexina/farmacologia , Receptores de Orexina/metabolismo , Pirimidinas/farmacologia , Quinazolinas/farmacologia , Distúrbios do Início e da Manutenção do Sono/tratamento farmacológico , Animais , Modelos Animais de Doenças , Cães , Relação Dose-Resposta a Droga , Humanos , Camundongos , Microssomos Hepáticos/efeitos dos fármacos , Modelos Moleculares , Estrutura Molecular , Antagonistas dos Receptores de Orexina/síntese química , Antagonistas dos Receptores de Orexina/química , Pirimidinas/síntese química , Pirimidinas/química , Quinazolinas/síntese química , Quinazolinas/química , Ratos , Relação Estrutura-Atividade
5.
BMC Neurosci ; 15: 109, 2014 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-25242351

RESUMO

BACKGROUND: The current standard of care for insomnia includes gamma-aminobutyric acid receptor A (GABAA) activators, which promote sleep as well as general central nervous system depression. Dual orexin receptor antagonists (DORAs) represent an alternative mechanism for insomnia treatment that induces somnolence by blocking the wake-promoting effects of orexin neuropeptides. The current study compares the role and interdependence of these two mechanisms on their ability to influence sleep architecture and quantitative electroencephalography (qEEG) spectral profiles across preclinical species. RESULTS: Active-phase dosing of DORA-22 induced consistent effects on sleep architecture in mice, rats, dogs, and rhesus monkeys; attenuation of active wake was accompanied by increases in both non-rapid eye movement (NREM) and rapid eye movement (REM) sleep. Eszopiclone, a representative GABAA receptor modulator, promoted sleep in rats and rhesus monkeys that was marked by REM sleep suppression, but had inconsistent effects in mice and paradoxically promoted wakefulness in dogs. Active-phase treatment of rats with DORA-12 similarly promoted NREM and REM sleep to magnitudes nearly identical to those seen during normal resting-phase sleep following vehicle treatment, whereas eszopiclone suppressed REM even to levels below those seen during the active phase. The qEEG changes induced by DORA-12 in rats also resembled normal resting-phase patterns, whereas eszopiclone induced changes distinct from normal active- or inactive-phase spectra. Co-dosing experiments, as well as studies in transgenic rats lacking orexin neurons, indicated partial overlap in the mechanism of sleep promotion by orexin and GABA modulation with the exception of the REM suppression exclusive to GABAA receptor modulation. Following REM deprivation in mice, eszopiclone further suppressed REM sleep while DORA-22 facilitated recovery including increased REM sleep. CONCLUSION: DORAs promote NREM and importantly REM sleep that is similar in proportion and magnitude to that seen during the normal resting phase across mammalian animal models. While limited overlap exists between therapeutic mechanisms, orexin signaling does not appear involved in the REM suppression exhibited by GABAA receptor modulators. The ability of DORAs to promote proportional NREM and REM sleep following sleep deprivation suggests that this mechanism may be effective in alleviating recovery from sleep disturbance.


Assuntos
Compostos Azabicíclicos/farmacologia , Azepinas/farmacologia , Benzimidazóis/farmacologia , Moduladores GABAérgicos/farmacologia , Hipnóticos e Sedativos/farmacologia , Piperazinas/farmacologia , Piperidinas/farmacologia , Sono/efeitos dos fármacos , Triazóis/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Estudos Cross-Over , Cães , Eletroencefalografia , Zopiclona , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/genética , Macaca mulatta , Masculino , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Neuropeptídeos/deficiência , Neuropeptídeos/genética , Antagonistas dos Receptores de Orexina , Orexinas , Ratos Sprague-Dawley , Ratos Transgênicos , Sono/fisiologia , Privação do Sono/tratamento farmacológico , Privação do Sono/fisiopatologia , Fases do Sono/efeitos dos fármacos , Fases do Sono/fisiologia , Especificidade da Espécie , Vigília/efeitos dos fármacos , Vigília/fisiologia
6.
Bioorg Med Chem Lett ; 24(9): 2079-85, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24704030

RESUMO

Recent clinical studies have demonstrated that dual orexin receptor antagonists (OX1R and OX2R antagonists or DORAs) represent a novel treatment option for insomnia patients. Previously we have disclosed several compounds in the diazepane amide DORA series with excellent potency and both preclinical and clinical sleep efficacy. Additional SAR studies in this series were enabled by the expansion of the acetonitrile-assisted, diphosgene-mediated 2,4-dichloropyrimidine synthesis to novel substrates providing an array of Western heterocycles. These heterocycles were utilized to synthesize analogs in short order with high levels of potency on orexin 1 and orexin 2 receptors as well as in vivo sleep efficacy in the rat.


Assuntos
Antagonistas dos Receptores de Orexina , Pirimidinas/química , Pirimidinas/farmacologia , Sono/efeitos dos fármacos , Animais , Descoberta de Drogas , Humanos , Pirimidinas/síntese química , Ratos , Distúrbios do Início e da Manutenção do Sono/tratamento farmacológico
7.
Bioorg Med Chem Lett ; 24(20): 4884-90, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25248679

RESUMO

Orexin receptor antagonists have demonstrated clinical utility for the treatment of insomnia. The majority of clinical efforts to date have focused on the development of dual orexin receptor antagonists (DORAs), small molecules that antagonize both the orexin 1 and orexin 2 receptors. Our group has recently disclosed medicinal chemistry efforts to identify highly potent, orally bioavailable selective orexin 2 receptor antagonists (2-SORAs) that possess acceptable profiles for clinical development. Herein we report additional SAR studies within the 'triaryl' amide 2-SORA series focused on improvements in compound stability in acidic media and time-dependent inhibition of CYP3A4. These studies resulted in the discovery of 2,5-disubstituted isonicotinamide 2-SORAs such as compound 24 that demonstrated improved stability and TDI profiles as well as excellent sleep efficacy across species.


Assuntos
Descoberta de Drogas , Antagonistas dos Receptores de Orexina , Piridinas/farmacologia , Distúrbios do Início e da Manutenção do Sono/tratamento farmacológico , Tiazóis/farmacologia , Animais , Cães , Relação Dose-Resposta a Droga , Humanos , Camundongos , Estrutura Molecular , Piridinas/síntese química , Piridinas/química , Ratos , Relação Estrutura-Atividade , Tiazóis/síntese química , Tiazóis/química
8.
BMC Neurosci ; 14: 90, 2013 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-23981345

RESUMO

BACKGROUND: Drugs targeting insomnia ideally promote sleep throughout the night, maintain normal sleep architecture, and are devoid of residual effects associated with morning sedation. These features of an ideal compound are not only dependent upon pharmacokinetics, receptor binding kinetics, potency and pharmacodynamic activity, but also upon a compound's mechanism of action. RESULTS: Dual orexin receptor antagonists (DORAs) block the arousal-promoting activity of orexin peptides and, as demonstrated in the current work, exhibit an efficacy signal window dependent upon oscillating levels of endogenous orexin neuropeptide. Sleep efficacy of structurally diverse DORAs in rat and dog was achieved at plasma exposures corresponding to orexin 2 receptor (OX2R) occupancies in the range of 65 to 80%. In rats, the time course of OX2R occupancy was dependent upon receptor binding kinetics and was tightly correlated with the timing of active wake reduction. In rhesus monkeys, direct comparison of DORA-22 with GABA-A modulators at similar sleep-inducing doses revealed that diazepam produced next-day residual sleep and both diazepam and eszopiclone induced next-day cognitive deficits. In stark contrast, DORA-22 did not produce residual effects. Furthermore, DORA-22 evoked only minimal changes in quantitative electroencephalogram (qEEG) activity during the normal resting phase in contrast to GABA-A modulators which induced substantial qEEG changes. CONCLUSION: The higher levels of receptor occupancy necessary for DORA efficacy require a plasma concentration profile sufficient to maintain sleep for the duration of the resting period. DORAs, with a half-life exceeding 8 h in humans, are expected to fulfill this requirement as exposures drop to sub-threshold receptor occupancy levels prior to the wake period, potentially avoiding next-day residual effects at therapeutic doses.


Assuntos
Azepinas/farmacocinética , Antagonistas dos Receptores de Orexina , Sono/efeitos dos fármacos , Triazóis/farmacocinética , Animais , Cães , Eletroencefalografia , Feminino , Humanos , Imunoensaio , Peptídeos e Proteínas de Sinalização Intracelular/líquido cefalorraquidiano , Macaca mulatta , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuropeptídeos/líquido cefalorraquidiano , Orexinas , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Sono/fisiologia
9.
J Neurogenet ; 25(1-2): 52-61, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21473737

RESUMO

Orexins/hypocretins are key neuropeptides responsible for regulating central arousal and reward circuits. Two receptors respond to orexin signaling, orexin 1 receptor (OX(1)R) and orexin 2 receptor (OX(2)R) with partially overlapping nervous system distributions. Genetic studies suggest orexin receptor antagonists could be therapeutic for insomnia and other disorders with disruptions of sleep and wake. Suvorexant (MK-4305) is a potent, selective, and orally bioavailable antagonist of OX(1)R and OX(2)R currently under clinical investigation as a novel therapy for insomnia. Examination of Suvorexant in radioligand binding assays using tissue from transgenic rats expressing the human OX(2)R found nearly full receptor occupancy (>90%) at plasma exposures of 1.1 µM. Dosed orally Suvorexant significantly and dose-dependently reduced locomotor activity and promoted sleep in rats (10, 30, and 100 mg/kg), dogs (1 and 3 mg/kg), and rhesus monkeys (10 mg/kg). Consistent cross-species sleep/wake architecture changes produced by Suvorexant highlight a unique opportunity to develop dual orexin antagonists as a novel therapy for insomnia.


Assuntos
Azepinas/farmacologia , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores de Neuropeptídeos/antagonistas & inibidores , Sono/efeitos dos fármacos , Triazóis/farmacologia , Animais , Área Sob a Curva , Azidas , Células CHO , Cricetinae , Cricetulus , Relação Dose-Resposta a Droga , Eletrocardiografia , Eletromiografia , Humanos , Macaca mulatta , Atividade Motora/efeitos dos fármacos , Octreotida/análogos & derivados , Receptores de Orexina , Ligação Proteica/efeitos dos fármacos , Ratos , Tempo de Reação/efeitos dos fármacos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropeptídeos/genética , Receptores de Neuropeptídeos/metabolismo , Transfecção
10.
J Neurogenet ; 25(4): 167-81, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22091728

RESUMO

Despite the substantial impact of sleep disturbances on human health and the many years of study dedicated to understanding sleep pathologies, the underlying genetic mechanisms that govern sleep and wake largely remain unknown. Recently, the authors completed large-scale genetic and gene expression analyses in a segregating inbred mouse cross and identified candidate causal genes that regulate the mammalian sleep-wake cycle, across multiple traits including total sleep time, amounts of rapid eye movement (REM), non-REM, sleep bout duration, and sleep fragmentation. Here the authors describe a novel approach toward validating candidate causal genes, while also identifying potential targets for sleep-related indications. Select small-molecule antagonists and agonists were used to interrogate candidate causal gene function in rodent sleep polysomnography assays to determine impact on overall sleep architecture and to evaluate alignment with associated sleep-wake traits. Significant effects on sleep architecture were observed in validation studies using compounds targeting the muscarinic acetylcholine receptor M3 subunit (Chrm3) (wake promotion), nicotinic acetylcholine receptor alpha4 subunit (Chrna4) (wake promotion), dopamine receptor D5 subunit (Drd5) (sleep induction), serotonin 1D receptor (Htr1d) (altered REM fragmentation), glucagon-like peptide-1 receptor (Glp1r) (light sleep promotion and reduction of deep sleep), and calcium channel, voltage-dependent, T type, alpha 1I subunit (Cacna1i) (increased bout duration of slow wave sleep). Taken together, these results show the complexity of genetic components that regulate sleep-wake traits and highlight the importance of evaluating this complex behavior at a systems level. Pharmacological validation of genetically identified putative targets provides a rapid alternative to generating knock out or transgenic animal models, and may ultimately lead towards new therapeutic opportunities.


Assuntos
Cruzamentos Genéticos , Transtornos do Sono-Vigília/tratamento farmacológico , Transtornos do Sono-Vigília/genética , Sono/efeitos dos fármacos , Sono/genética , Animais , Canais de Cálcio Tipo N , Canais de Cálcio Tipo P/genética , Canais de Cálcio Tipo Q/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Receptor Muscarínico M3/genética , Receptores de Dopamina D5/genética , Receptores Nicotínicos/genética , Transtornos do Sono-Vigília/metabolismo
11.
Bioorg Med Chem Lett ; 21(6): 1692-6, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21316226

RESUMO

A novel series of amide T-type calcium channel antagonists were prepared and evaluated using in vitro and in vivo assays. Optimization of the screening hit 3 led to identification of the potent and selective T-type antagonist 37 that displayed in vivo efficacy in rodent models of epilepsy and sleep.


Assuntos
Amidas/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo T/efeitos dos fármacos , Animais , Camundongos , Ratos , Ratos Wistar
12.
J Pharmacol Exp Ther ; 335(2): 409-17, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20682849

RESUMO

T-type calcium channels have been implicated in many behaviorally important neurophysiological processes, and altered channel activity has been linked to the pathophysiology of neurological disorders such as insomnia, epilepsy, Parkinson's disease, depression, schizophrenia, and pain. We have previously identified a number of potent and selective T-type channel antagonists (Barrow et al., 2007; Shipe et al., 2008; Yang et al., 2008). Here we describe the properties of the antagonist TTA-A2 [2-(4-cyclopropylphenyl)-N-((1R)-1-{5-[(2,2,2-trifluoroethyl)oxo]-pyridin-2-yl}ethyl)acetamide], assessed in patch-clamp experiments. TTA-A2 blocks T-type channels (Ca(v)3.1, 3.2, 3.3) voltage dependently and with high potency (IC(50) ∼100 nM). Stimulation at 3 Hz revealed additional use dependence of inhibition. A hyperpolarized shift of the channel availability curve and delayed channel recovery from inactivation suggest that the compound preferentially interacts with and stabilizes inactivated channels. The compound showed a ∼300-fold selectivity for Ca(v)3 channels over high-voltage activated calcium channels. Inhibitory effects on native T-type currents were confirmed in brain slice recordings from the dorsal lateral geniculate nucleus and the subthalamic nucleus. Furthermore, we demonstrate that in vivo T-type channel inhibition by TTA-A2 suppresses active wake and promotes slow-wave sleep in wild-type mice but not in mice lacking both Ca(v)3.1 and Ca(v)3.3, suggesting the selective effect of TTA-A2 on recurrent thalamocortical network activity. The discovery of the potent and selective T-type channel antagonist TTA-A2 has enabled us to study the in vivo effects of pharmacological T-channel inhibition on arousal in mice, and it will help to explore the validity of these channels as potential drug targets for sleep-related and other neurological diseases.


Assuntos
Nível de Alerta/efeitos dos fármacos , Benzenoacetamidas/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo T/metabolismo , Piridinas/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Benzenoacetamidas/química , Benzenoacetamidas/uso terapêutico , Bloqueadores dos Canais de Cálcio/química , Bloqueadores dos Canais de Cálcio/uso terapêutico , Canais de Cálcio Tipo T/genética , Linhagem Celular , Clonagem Molecular , Relação Dose-Resposta a Droga , Corpos Geniculados/efeitos dos fármacos , Corpos Geniculados/metabolismo , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estrutura Molecular , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Técnicas de Patch-Clamp , Piridinas/química , Piridinas/uso terapêutico , Ratos , Ratos Sprague-Dawley , Transtornos do Despertar do Sono/tratamento farmacológico , Transtornos do Despertar do Sono/metabolismo
13.
Bioorg Med Chem Lett ; 20(17): 5147-52, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20673719

RESUMO

The discovery and synthesis of 4,4-disubstituted quinazolinones as T-type calcium channel antagonists is reported. Based on lead compounds 2 and 3, a focused SAR campaign driven by the optimization of potency, metabolic stability, and pharmacokinetic profile identified 45 as a potent T-type Ca(2+) channel antagonist with minimized PXR activation. In vivo, 45 suppressed seizure frequency in a rat model of absence epilepsy and showed significant alterations of sleep architecture after oral dosing to rats as measured by EEG.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo T/efeitos dos fármacos , Quinazolinonas/química , Quinazolinonas/farmacologia , Animais , Disponibilidade Biológica , Bloqueadores dos Canais de Cálcio/química , Bloqueadores dos Canais de Cálcio/farmacocinética , Cromatografia Líquida de Alta Pressão , Descoberta de Drogas , Haplorrinos , Humanos , Quinazolinonas/farmacocinética , Ratos , Relação Estrutura-Atividade
14.
Psychopharmacology (Berl) ; 233(13): 2441-50, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27117142

RESUMO

RATIONALE: Much preclinical data, almost exclusively using rodent, supports the notion that phosphodiesterase 10A (PDE10A) inhibition may offer an alternative to the current standard of care in schizophrenia. However, concerns persist regarding the clinical translatability of these models for newer drug classes like PDE10A inhibitors. OBJECTIVES: We therefore sought to characterize the clinical standard risperidone and the PDE10A inhibitor THPP-1 in nonhuman primate, both alone and when used as a combination therapy. METHODS: THPP-1 and risperidone were tested in a novel rhesus model of stimulant-induced motor activity (SIMA) and in rhesus electroencephalography (EEG). RESULTS: Consistent with rodent data, both THPP-1 and risperidone significantly attenuated the stimulant effects in SIMA when administered alone, though some differences were noted. Combination therapy with a low dose of risperidone produced significantly more robust effects. THPP-1 and risperidone also produced a marked reduction of wake cycle time and gamma frequency power in EEG. However, THPP-1 differed from risperidone by reducing spectral power of lower frequencies (delta). CONCLUSIONS: SIMA results suggest that PDE10A inhibition produces antipsychotic-like effects in higher species, and that combination therapy with PDE10A inhibitors may produce more robust efficacy compared to monotherapies. EEG and qEEG results confirm that PDE10A inhibition does share some central signaling effects with clinically effective antipsychotics. The present combination therapy results may carry implications for the manner in which clinical testing of PDE10A inhibitors is conducted.


Assuntos
Antipsicóticos/farmacologia , Comportamento Animal/efeitos dos fármacos , Eletroencefalografia/efeitos dos fármacos , Inibidores de Fosfodiesterase/farmacologia , Diester Fosfórico Hidrolases/farmacologia , Risperidona/farmacologia , Esquizofrenia/tratamento farmacológico , Análise de Variância , Animais , Estimulantes do Sistema Nervoso Central/farmacologia , Modelos Animais de Doenças , Quimioterapia Combinada , Macaca mulatta , Masculino , Atividade Motora/efeitos dos fármacos
15.
Sleep ; 39(3): 603-12, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26943466

RESUMO

STUDY OBJECTIVES: In addition to enhancing sleep onset and maintenance, a desirable insomnia therapeutic agent would preserve healthy sleep's ability to wake and respond to salient situations while maintaining sleep during irrelevant noise. Dual orexin receptor antagonists (DORAs) promote sleep by selectively inhibiting wake-promoting neuropeptide signaling, unlike global inhibition of central nervous system excitation by gamma-aminobutyric acid (GABA)-A receptor (GABAaR) modulators. We evaluated the effect of DORA versus GABAaR modulators on underlying sleep architecture, ability to waken to emotionally relevant stimuli versus neutral auditory cues, and performance on a sleepiness-sensitive cognitive task upon awakening. METHODS: DORA-22 and GABAaR modulators (eszopiclone, diazepam) were evaluated in adult male rhesus monkeys (n = 34) with continuous polysomnography recordings in crossover studies of sleep architecture, arousability to a classically conditioned salient versus neutral acoustical stimulus, and psychomotor vigilance task (PVT) performance if awakened. RESULTS: All compounds decreased wakefulness, but only DORA-22 sleep resembled unmedicated sleep in terms of underlying sleep architecture, preserved ability to awaken to salient-conditioned acoustic stimuli while maintaining sleep during neutral acoustic stimuli, and no congnitive impairment in PVT performance. Although GABAaR modulators induced lighter sleep, monkeys rarely woke to salient stimuli and PVT performance was impaired if monkeys were awakened. CONCLUSIONS: In nonhuman primates, DORAs' targeted mechanism for promoting sleep protects the ability to selectively arouse to salient stimuli and perform attentional tasks unimpaired, suggesting meaningful differentiation between a hypnotic agent that works through antagonizing orexin wake signaling versus the sedative hypnotic effects of the GABAaR modulator mechanism of action.


Assuntos
Macaca mulatta/fisiologia , Antagonistas dos Receptores de Orexina/farmacologia , Orexinas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sono/efeitos dos fármacos , Sono/fisiologia , Vigília/efeitos dos fármacos , Vigília/fisiologia , Animais , Nível de Alerta/efeitos dos fármacos , Condicionamento Clássico , Estudos Cross-Over , Diazepam/farmacologia , Zopiclona/farmacologia , GABAérgicos/farmacologia , Hipnóticos e Sedativos/farmacologia , Masculino , Piperidinas/farmacologia , Polissonografia , Fases do Sono/efeitos dos fármacos , Fases do Sono/fisiologia , Triazóis/farmacologia
16.
Sci Rep ; 6: 27147, 2016 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-27256922

RESUMO

Orexin neuropeptides regulate sleep/wake through orexin receptors (OX1R, OX2R); OX2R is the predominant mediator of arousal promotion. The potential for single OX2R antagonism to effectively promote sleep has yet to be demonstrated in humans. MK-1064 is an OX2R-single antagonist. Preclinically, MK-1064 promotes sleep and increases both rapid eye movement (REM) and non-REM (NREM) sleep in rats at OX2R occupancies higher than the range observed for dual orexin receptor antagonists. Similar to dual antagonists, MK-1064 increases NREM and REM sleep in dogs without inducing cataplexy. Two Phase I studies in healthy human subjects evaluated safety, tolerability, pharmacokinetics and sleep-promoting effects of MK-1064, and demonstrated dose-dependent increases in subjective somnolence (via Karolinska Sleepiness Scale and Visual Analogue Scale measures) and sleep (via polysomnography), including increased REM and NREM sleep. Thus, selective OX2R antagonism is sufficient to promote REM and NREM sleep across species, similarly to that seen with dual orexin receptor antagonism.


Assuntos
Antagonistas dos Receptores de Orexina/administração & dosagem , Receptores de Orexina/metabolismo , Medicamentos Indutores do Sono/administração & dosagem , Fases do Sono/efeitos dos fármacos , Animais , Cães , Relação Dose-Resposta a Droga , Feminino , Humanos , Masculino , Camundongos , Antagonistas dos Receptores de Orexina/farmacologia , Polissonografia , Ratos , Medicamentos Indutores do Sono/farmacologia , Sono REM/efeitos dos fármacos
17.
Front Behav Neurosci ; 8: 182, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24904334

RESUMO

The ability to awaken from sleep in response to important stimuli is a critical feature of normal sleep, as is maintaining sleep continuity in the presence of irrelevant background noise. Dual orexin receptor antagonists (DORAs) effectively promote sleep across species by targeting the evolutionarily conserved wake-promoting orexin signaling pathway. This study in dogs investigated whether DORA-induced sleep preserved the ability to awaken appropriately to salient acoustic stimuli but remain asleep when exposed to irrelevant stimuli. Sleep and wake in response to DORAs, vehicle, GABA-A receptor modulators (diazepam, eszopiclone and zolpidem) and antihistamine (diphenhydramine) administration were evaluated in telemetry-implanted adult dogs with continuous electrocorticogram, electromyogram (EMG), electrooculogram (EOG), and activity recordings. DORAs induced sleep, but GABA-A modulators and antihistamine induced paradoxical hyperarousal. Thus, salience gating studies were conducted during DORA-22 (0.3, 1, and 5 mg/kg; day and night) and vehicle nighttime sleep. The acoustic stimuli were either classically conditioned using food reward and positive attention (salient stimulus) or presented randomly (neutral stimulus). Once conditioned, the tones were presented at sleep times corresponding to maximal DORA-22 exposure. In response to the salient stimuli, dogs woke completely from vehicle and orexin-antagonized sleep across all sleep stages but rarely awoke to neutral stimuli. Notably, acute pharmacological antagonism of orexin receptors paired with emotionally salient anticipation produced wake, not cataplexy, in a species where genetic (chronic) loss of orexin receptor signaling leads to narcolepsy/cataplexy. DORA-induced sleep in the dog thereby retains the desired capacity to awaken to emotionally salient acoustic stimuli while preserving uninterrupted sleep in response to irrelevant stimuli.

18.
ChemMedChem ; 9(2): 311-22, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24376006

RESUMO

The field of small-molecule orexin antagonist research has evolved rapidly in the last 15 years from the discovery of the orexin peptides to clinical proof-of-concept for the treatment of insomnia. Clinical programs have focused on the development of antagonists that reversibly block the action of endogenous peptides at both the orexin 1 and orexin 2 receptors (OX1 R and OX2 R), termed dual orexin receptor antagonists (DORAs), affording late-stage development candidates including Merck's suvorexant (new drug application filed 2012). Full characterization of the pharmacology associated with antagonism of either OX1 R or OX2 R alone has been hampered by the dearth of suitable subtype-selective, orally bioavailable ligands. Herein, we report the development of a selective orexin 2 antagonist (2-SORA) series to afford a potent, orally bioavailable 2-SORA ligand. Several challenging medicinal chemistry issues were identified and overcome during the development of these 2,5-disubstituted nicotinamides, including reversible CYP inhibition, physiochemical properties, P-glycoprotein efflux and bioactivation. This article highlights structural modifications the team utilized to drive compound design, as well as in vivo characterization of our 2-SORA clinical candidate, 5''-chloro-N-[(5,6-dimethoxypyridin-2-yl)methyl]-2,2':5',3''-terpyridine-3'-carboxamide (MK-1064), in mouse, rat, dog, and rhesus sleep models.


Assuntos
Desenho de Fármacos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Neuropeptídeos/antagonistas & inibidores , Piridinas/química , Piridinas/farmacologia , Distúrbios do Início e da Manutenção do Sono/tratamento farmacológico , Animais , Cães , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Macaca mulatta , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuropeptídeos/metabolismo , Orexinas , Ratos , Ratos Sprague-Dawley , Distúrbios do Início e da Manutenção do Sono/metabolismo
19.
Sci Transl Med ; 5(179): 179ra44, 2013 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-23552372

RESUMO

Current treatments for insomnia, such as zolpidem (Ambien) and eszopiclone (Lunesta), are γ-aminobutyric acid type A (GABAA)-positive allosteric modulators that carry a number of side effects including the potential to disrupt cognition. In an effort to develop better tolerated medicines, we have identified dual orexin 1 and 2 receptor antagonists (DORAs), which promote sleep in preclinical animal models and humans. We compare the effects of orally administered eszopiclone, zolpidem, and diazepam to the dual orexin receptor antagonist DORA-22 on sleep and the novel object recognition test in rat, and on sleep and two cognition tests (delayed match to sample and serial choice reaction time) in the rhesus monkey. Each compound's minimal dose that promoted sleep versus the minimal dose that exerted deficits in these cognitive tests was determined, and a therapeutic margin was established. We found that DORA-22 has a wider therapeutic margin for sleep versus cognitive impairment in rat and rhesus monkey compared to the other compounds tested. These data were further supported with the demonstration of a wider therapeutic margin for DORA-22 compared to the other compounds on sleep versus the expression of hippocampal activity-regulated cytoskeletal-associated protein (Arc), an immediate-early gene product involved in synaptic plasticity. These findings suggest that DORAs might provide an effective treatment for insomnia with a greater therapeutic margin for sleep versus cognitive disturbances compared to the GABAA-positive allosteric modulators currently in use.


Assuntos
Cognição/efeitos dos fármacos , Hipnóticos e Sedativos/farmacologia , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores de Neuropeptídeos/antagonistas & inibidores , Sono/efeitos dos fármacos , Administração Oral , Animais , Atenção/efeitos dos fármacos , Compostos Azabicíclicos/administração & dosagem , Compostos Azabicíclicos/farmacologia , Comportamento de Escolha/efeitos dos fármacos , Proteínas do Citoesqueleto/metabolismo , Diazepam/administração & dosagem , Diazepam/farmacologia , Zopiclona , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Macaca mulatta , Masculino , Memória de Curto Prazo/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Receptores de Orexina , Piperazinas/administração & dosagem , Piperazinas/farmacologia , Piperidinas/administração & dosagem , Piperidinas/farmacologia , Piridinas/administração & dosagem , Piridinas/farmacologia , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropeptídeos/metabolismo , Reconhecimento Psicológico , Análise e Desempenho de Tarefas , Fatores de Tempo , Triazóis/administração & dosagem , Triazóis/farmacologia , Zolpidem , Ácido gama-Aminobutírico/metabolismo
20.
Neuropsychopharmacology ; 38(12): 2401-8, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23722242

RESUMO

Dual orexin receptor antagonists (DORAs) induce sleep by blocking orexin 1 and orexin 2 receptor-mediated activities responsible for regulating wakefulness. DORAs represent a potential alternative mechanism to the current standard of care that includes the γ-aminobutyric acid (GABA)A receptor-positive allosteric modulators, eszopiclone and zolpidem. This work uses an innovative method to analyze electroencephalogram (EEG) spectral frequencies within sleep/wake states to differentiate the effects of GABAA modulators from DORA-22, an analog of the DORA MK-6096, in Sprague-Dawley rats. The effects of low, intermediate, and high doses of eszopiclone, zolpidem, and DORA-22 were examined after first defining each compound's ability to promote sleep during active-phase dosing. The EEG spectral frequency power within specific sleep stages was calculated in 1-Hz intervals from 1 to 100 Hz within each sleep/wake state for the first 4 h after the dose. Eszopiclone and zolpidem produced marked, dose-responsive disruptions in sleep stage-specific EEG spectral profiles compared with vehicle treatment. In marked contrast, DORA-22 exhibited marginal changes in the spectral profile, observed only during rapid eye movement sleep, and only at the highest dose tested. Moreover, while eszopiclone- and zolpidem-induced changes were evident in the inactive period, the EEG spectral responses to DORA-22 were absent during this phase. These results suggest that DORA-22 differs from eszopiclone and zolpidem whereby DORA-22 promotes somnolence without altering the neuronal network EEG activity observed during normal sleep.


Assuntos
Compostos Azabicíclicos/farmacologia , Encéfalo/efeitos dos fármacos , Agonistas de Receptores de GABA-A/farmacologia , Antagonistas dos Receptores de Orexina , Piperazinas/farmacologia , Piperidinas/farmacologia , Piridinas/farmacologia , Fases do Sono/efeitos dos fármacos , Triazóis/farmacologia , Animais , Compostos Azabicíclicos/administração & dosagem , Encéfalo/fisiologia , Eletroencefalografia , Zopiclona , Agonistas de Receptores de GABA-A/administração & dosagem , Masculino , Piperazinas/administração & dosagem , Piperidinas/administração & dosagem , Piridinas/administração & dosagem , Ratos , Ratos Sprague-Dawley , Fases do Sono/fisiologia , Triazóis/administração & dosagem , Zolpidem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa