Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
PLoS Genet ; 18(11): e1010459, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36441774

RESUMO

Overexpression of the TGFß pathway impairs the proliferation of the hematopoietic stem and progenitor cells (HSPCs) pool in Fanconi anemia (FA). TGFß promotes the expression of NHEJ genes, known to function in a low-fidelity DNA repair pathway, and pharmacological inhibition of TGFß signaling rescues FA HSPCs. Here, we demonstrate that genetic disruption of Smad3, a transducer of the canonical TGFß pathway, modifies the phenotype of FA mouse models deficient for Fancd2. We observed that the TGFß and NHEJ pathway genes are overexpressed during the embryogenesis of Fancd2-/- mice and that the Fancd2-/-Smad3-/- double knockout (DKO) mice undergo high levels of embryonic lethality due to loss of the TGFß-NHEJ axis. Fancd2-deficient embryos acquire extensive genomic instability during gestation which is not reversed by Smad3 inactivation. Strikingly, the few DKO survivors have activated the non-canonical TGFß-ERK pathway, ensuring expression of NHEJ genes during embryogenesis and improved survival. Activation of the TGFß-NHEJ axis was critical for the survival of the few Fancd2-/-Smad3-/- DKO newborn mice but had detrimental consequences for these surviving mice, such as enhanced genomic instability and ineffective hematopoiesis.


Assuntos
Anemia de Fanconi , Camundongos , Animais , Anemia de Fanconi/genética , Fator de Crescimento Transformador beta/genética
2.
Int J Mol Sci ; 25(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38928478

RESUMO

Hereditary breast and ovarian cancer (HBOC) syndrome is a genetic condition that increases the risk of breast cancer by 80% and that of ovarian cancer by 40%. The most common pathogenic variants (PVs) causing HBOC occur in the BRCA1 gene, with more than 3850 reported mutations in the gene sequence. The prevalence of specific PVs in BRCA1 has increased across populations due to the effect of founder mutations. Therefore, when a founder mutation is identified, it becomes key to improving cancer risk characterization and effective screening protocols. The only founder mutation described in the Mexican population is the deletion of exons 9 to 12 of BRCA1 (BRCA1Δ9-12), and its description focuses on the gene sequence, but no transcription profiles have been generated for individuals who carry this gene. In this study, we describe the transcription profiles of cancer patients and healthy individuals who were heterozygous for PV BRCA1Δ9-12 by analyzing the differential expression of both alleles compared with the homozygous BRCA1 control group using RT-qPCR, and we describe the isoforms produced by the BRCA1 wild-type and BRCA1Δ9-12 alleles using nanopore long-sequencing. Using the Kruskal-Wallis test, our results showed a similar transcript expression of the wild-type allele between the healthy heterozygous group and the homozygous BRCA1 control group. An association between the recurrence and increased expression of both alleles in HBOC patients was also observed. An analysis of the sequences indicated four wild-type isoforms with diagnostic potential for discerning individuals who carry the PV BRCA1Δ9-12 and identifying which of them has developed cancer.


Assuntos
Alelos , Proteína BRCA1 , Síndrome Hereditária de Câncer de Mama e Ovário , Humanos , Proteína BRCA1/genética , Feminino , Síndrome Hereditária de Câncer de Mama e Ovário/genética , Pessoa de Meia-Idade , Predisposição Genética para Doença , Adulto , Efeito Fundador , Éxons/genética , Neoplasias da Mama/genética , Heterozigoto , Mutação , México , Neoplasias Ovarianas/genética , Relevância Clínica
3.
Gac Med Mex ; 160(1): 76-85, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38753554

RESUMO

BACKGROUND: Chromosomal abnormalities are present in 50 to 60% of miscarriages and in 6 to 19% of stillbirths. Although microarrays are preferred for studying chromosomal abnormalities, many hospitals cannot offer this methodology. OBJECTIVE: To present the results of the cytogenetic analysis of 303 products of conception (POC), which included 184 miscarriages, 49 stillbirths and 17 cases of undefined age. MATERIAL AND METHODS: Karyotyping, fluorescence in situ hybridization, short tandem repeats and microarrays were used, depending on the type of loss and available sample. RESULTS: In 29 POCs we found maternal tissue and were eliminated from the analyses. Informative results were obtained in 250 (91.2 %)/274 cases; the karyotyping success rate was 80.7%; that of single nucleotide polymorphism microarrays, 94.5%; and that of fluorescence in situ hybridization and short tandem repeat, 100%. Cytogenetic abnormalities were observed in 57.6% of miscarriages and in 24.5% of stillbirths; 94% of total anomalies were numerical and 6% were submicroscopic. CONCLUSIONS: Karyotyping with simultaneous short tandem repeat study to rule out contamination of maternal cells is effective for studying miscarriages; in stillbirths, microarrays are recommended.


ANTECEDENTES: Las alteraciones cromosómicas están presentes en 50 a 60 % de los abortos espontáneos y en 6 a 19 % de los mortinatos. Aunque se prefieren los microarreglos para estudiarlos, numerosos hospitales no pueden ofrecerlos. OBJETIVO: Presentar los resultados del estudio citogenético de 303 productos de la concepción (POC), 184 se obtuvieron de abortos espontáneos, 49 fueron mortinatos y en 17 no se identificó la de edad gestacional. MATERIAL Y MÉTODOS: Se empleó cariotipo, hibridación in situ con fluorescencia, secuencias cortas repetidas en tándem y microarreglos, según el tipo de pérdida y la muestra disponible. RESULTADOS: En 29 POC se encontró tejido materno, por lo que fueron eliminados de los análisis. En 250 (91.2 %)/274 casos se obtuvieron resultados informativos; la tasa de éxito del cariotipo fue de 80.7 %; la de los microarreglos de SNP, de 94.5 %; y la de la hibridación fluorescente in situ y la repetición corta en tándem, de 100 %. Se observaron anomalías citogenéticas en 57.6 % de los abortos espontáneos y en 24.5 % de los mortinatos; 94 % de las anomalías fueron numéricas y 6 %, submicroscópicas. CONCLUSIONES: El cariotipo en conjunto con el estudio de secuencias cortas repetidas en tándem para descartar contaminación de células maternas es efectivo para estudiar abortos espontáneos; los microarreglos se recomiendan en los mortinatos.


Assuntos
Aborto Espontâneo , Aberrações Cromossômicas , Hibridização in Situ Fluorescente , Cariotipagem , Humanos , Feminino , Aborto Espontâneo/epidemiologia , Aborto Espontâneo/genética , México/epidemiologia , Gravidez , Cariotipagem/métodos , Natimorto/genética , Natimorto/epidemiologia , Adulto , Análise Citogenética/métodos , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único , Adulto Jovem
4.
J Theor Biol ; 573: 111608, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37595867

RESUMO

Double strand break (DSB) repair is critical to maintaining the integrity of the genome. DSB repair deficiency underlies multiple pathologies, including cancer, chromosome instability syndromes, and, potentially, neurodevelopmental defects. DSB repair is mainly handled by two pathways: highly accurate homologous recombination (HR), which requires a sister chromatid for template-based repair, limited to S/G2 phases of the cell cycle, and canonical non-homologous end joining (c-NHEJ), available throughout the cell cycle in which minimum homology is sufficient for highly efficient yet error-prone repair. Some circumstances, such as cancer, require alternative highly mutagenic DSB repair pathways like microhomology-mediated end-joining (MMEJ) and single-strand annealing (SSA), which are triggered to attend to DNA damage. These non-canonical repair alternatives are emerging as prominent drivers of resistance in drug-based tumor therapies. Multiple DSB repair options require tight inter-pathway regulation to prevent unscheduled activities. In addition to this complexity, epigenetic modifications of the histones surrounding the DSB region are emerging as critical regulators of the DSB repair pathway choice. Modeling approaches to understanding DSBs repair pathway choice are advantageous to perform simulations and generate predictions on previously uncharacterized aspects of DSBs response. In this work, we present a Boolean network model of the DSB repair pathway choice that incorporates the knowledge, into a dynamic system, of the inter-pathways regulation involved in DSB repair, i.e., HR, c-NHEJ, SSA, and MMEJ. Our model recapitulates the well-characterized HR activity observed in wild-type cells in response to DSBs. It also recovers clinically relevant behaviors of BRCA1/FANCS mutants, and their corresponding drug resistance mechanisms ascribed to DNA repair gain-of-function pathogenic variants. Since epigenetic modifiers are dynamic and possible druggable targets, we incorporated them into our model to better characterize their involvement in DSB repair. Our model predicted that loss of the TIP60 complex and its corresponding histone acetylation activity leads to activation of SSA in response to DSBs. Our experimental validation showed that TIP60 effectively prevents activation of RAD52, a key SSA executor, and confirms the suitable use of Boolean network modeling for understanding DNA DSB repair.


Assuntos
Dano ao DNA , Reparo do DNA , Ciclo Celular , Mutagênese , Divisão Celular
5.
Int J Cancer ; 150(9): 1455-1470, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34913480

RESUMO

Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm defined by the presence of t(9;22) translocation whose origin has been associated with the tridimensional genome organization. This rearrangement leads to the fusion of BCR and ABL1 genes giving rise to a chimeric protein with constitutive kinase activity. Imatinib, a tyrosine kinase inhibitor (TKI), is used as a first-line treatment for CML, though ~40% of CML patients do not respond. Here, using structured illumination microscopy (SIM) and 3D reconstruction, we studied the 3D organization patterns of the ABL1 and BCR genes, and their chromosome territories (CTs) CT9 and CT22, in CD34+ cells from CML patients that responded or not to TKI. We found that TKI resistance in CML is associated with high levels of structural disruption of CT9 and CT22 in CD34+ cells, increased CT volumes (especially for CT22), intermingling between CT9 and CT22, and an open-chromatin epigenetic mark in CT22. Altogether our results suggest that large-scale disruption of CT9 and CT22 correlates with the clinical response of CML patients, which could be translated into a potential prognostic marker of response to treatment in this disease and provide novel insights into the mechanisms underlying resistance to TKI in CML.


Assuntos
Proteínas de Fusão bcr-abl , Leucemia Mielogênica Crônica BCR-ABL Positiva , Cromossomos , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas de Fusão bcr-abl/genética , Humanos , Mesilato de Imatinib/uso terapêutico , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Inibidores de Proteínas Quinases/efeitos adversos
6.
Int J Mol Sci ; 23(4)2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-35216452

RESUMO

Fanconi anemia (FA) is a rare genetic disorder caused by pathogenic variants (PV) in at least 22 genes, which cooperate in the Fanconi anemia/Breast Cancer (FA/BRCA) pathway to maintain genome stability. PV in FANCA, FANCC, and FANCG account for most cases (~90%). This study evaluated the chromosomal, molecular, and physical phenotypic findings of a novel founder FANCG PV, identified in three patients with FA from the Mixe community of Oaxaca, Mexico. All patients presented chromosomal instability and a homozygous PV, FANCG: c.511-3_511-2delCA, identified by next-generation sequencing analysis. Bioinformatic predictions suggest that this deletion disrupts a splice acceptor site promoting the exon 5 skipping. Analysis of Cytoscan 750 K arrays for haplotyping and global ancestry supported the Mexican origin and founder effect of the variant, reaffirming the high frequency of founder PV in FANCG. The degree of bone marrow failure and physical findings (described through the acronyms VACTERL-H and PHENOS) were used to depict the phenotype of the patients. Despite having a similar frequency of chromosomal aberrations and genetic constitution, the phenotype showed a wide spectrum of severity. The identification of a founder PV could help for a systematic and accurate genetic screening of patients with FA suspicion in this population.


Assuntos
Anemia de Fanconi , Biologia Computacional , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação G da Anemia de Fanconi/genética , Efeito Fundador , Homozigoto , Humanos , México
7.
Gynecol Endocrinol ; 35(9): 772-776, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30887870

RESUMO

Turner syndrome (TS) is a common genetic disorder. TS-phenotype includes short stature, gonadal dysgenesis, cardiac and kidney malformations, low bone mineral density (low-BMD) and thyroiditis. TS-phenotype varies from patient to patient and the cause is not clear, the genomic background may be an important contributor for this variability. Our aim was to identify the association of specific single nucleotide variants in the PTPN22, VDR, KL, and CYP27B1 genes and vitamin D-metabolism, heart malformation, renal malformation, thyroiditis, and low-BMD in 61 Mexican TS-patients. DNA samples were genotyped for SNVs: rs7975232 (VDR), rs9536282 (KL), rs4646536 (CYP27B1), and rs1599971 (PTPN22) using the KASP assay. Chi-square test under a recessive model and multifactorial dimensionality reduction method were used for analysis. We found a significant association between renal malformation and the rs9536282 (KL) variant and between rs4646536 (CYP27B1) and low-BMD, these variants may have modest effects on these characteristics but contribute to the variability of the TS phenotype. In addition, we identified gene-gene interactions between variants in genes KL, CYP27B1 and VDR related to vitamin D-metabolism and low-BMD in TS-patients. Our results support the idea that the genetic background of TS-patients contributes to the clinical variability seen in them.


Assuntos
25-Hidroxivitamina D3 1-alfa-Hidroxilase/genética , Doenças Ósseas Metabólicas/genética , Glucuronidase/genética , Receptores de Calcitriol/genética , Síndrome de Turner/genética , Anormalidades Urogenitais/genética , Adolescente , Adulto , Densidade Óssea/genética , Doenças Ósseas Metabólicas/complicações , Doenças Ósseas Metabólicas/epidemiologia , Estudos de Casos e Controles , Criança , Pré-Escolar , Epistasia Genética , Feminino , Frequência do Gene , Estudos de Associação Genética , Humanos , Lactente , Rim/anormalidades , Proteínas Klotho , Redes e Vias Metabólicas/genética , México/epidemiologia , Polimorfismo de Nucleotídeo Único , Proteína Tirosina Fosfatase não Receptora Tipo 22/genética , Receptores de Calcitriol/metabolismo , Síndrome de Turner/complicações , Síndrome de Turner/epidemiologia , Anormalidades Urogenitais/complicações , Anormalidades Urogenitais/epidemiologia , Vitamina D/metabolismo , Adulto Jovem
8.
Int J Mol Sci ; 20(21)2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31652755

RESUMO

Variation in the location of the 15p region D15Z1 is recognized as a polymorphism in several human populations. We used high-stringency Fluorescence In Situ Hybridization (FISH) to detect D15Z1 in a Mexican cohort. Here, we report the presence of extra D15Z1 sequences on the p-arm of acrocentric chromosomes other than 15 in two groups of Mexican couples, one with healthy offspring (n = 75) and the other with aneuploid offspring (n = 87), mainly trisomy 21. The additional D15Z1 polymorphism was significantly increased in individuals with aneuploid offspring (26.4%), in comparison to individuals with healthy offspring (14%). The most frequent acceptor chromosome of D15Z1 was chromosome 13p, followed by 14p, and finally, 21p. Our results show an overall frequency of 21.6% of this polymorphism in the Mexican population and suggest that its presence might be associated with the mis-segregation of other acrocentric chromosomes and aneuploid offspring. The high frequency of the polymorphism of the D15Z1 sequence on acrocentric chromosomes other than 15 suggests a sequence homogenization of the acrocentric p arms, related to the important function of the centromere and the nucleolar organization region, which flank satellite III DNA.


Assuntos
Aneuploidia , Cromossomos Humanos Par 15/genética , Polimorfismo Genético , Adulto , Feminino , Humanos , Masculino , México , Linhagem
9.
Int J Mol Sci ; 20(10)2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31121898

RESUMO

Previous studies demonstrated modifications of high-density lipoproteins (HDL) structure and apolipoprotein (apo) A-I catabolism induced by the atorvastatin and fenofibrate combination. However, it remains unknown whether such structural and metabolic changes of HDL were related to an improvement of the HDL-cholesteryl esters (HDL-CE) metabolism. Therefore, we determined the structure of HDL and performed kinetic studies of HDL-CE radiolabeled with tritium in rabbits treated with atorvastatin, fenofibrate, and a combination of both drugs. The atorvastatin and fenofibrate combination increased the HDL size and the cholesterol and phospholipid plasma concentrations of the largest HDL subclasses. Moreover, the relative amount of unsaturated fatty acids contained in HDL increased, in detriment of saturated fatty acids as determined by gas chromatography-mass spectrometry. The transfers of cholesteryl esters (CE) from HDL to very low-density lipoproteins/low-density lipoproteins (VLDL/LDL) and vice versa were enhanced with atorvastatin, alone or in combination. Moreover, the direct elimination of CE from plasma via VLDL/LDL decreased with fenofibrate, whereas the direct elimination of CE via HDL augmented with the combination treatment. Taken together, the rise of unsaturated fatty acid content and the size increase of HDL, suggest that atorvastatin and fenofibrate induce more fluid HDL particles, which in turn favor an enhanced CE exchange between HDL and VLDL/LDL. Our results contribute to a better understanding of the relationship between the structure and function of HDL during the use of anti-dyslipidemic drugs.


Assuntos
Atorvastatina/farmacologia , Ésteres do Colesterol/metabolismo , Fenofibrato/farmacologia , Hipolipemiantes/farmacologia , Lipoproteínas HDL/metabolismo , Animais , Anticolesterolemiantes/farmacologia , Ésteres do Colesterol/análise , Cinética , Lipoproteínas HDL/química , Coelhos
10.
Theor Biol Med Model ; 12: 26, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26573569

RESUMO

BACKGROUND: Gonadal sex determination (GSD) in humans is a complex biological process that takes place in early stages of embryonic development when the bipotential gonadal primordium (BGP) differentiates towards testes or ovaries. This decision is directed by one of two distinct pathways embedded in a GSD network activated in a population of coelomic epithelial cells, the Sertoli progenitor cells (SPC) and the granulosa progenitor cells (GPC). In males, the pathway is activated when the Sex-Determining Region Y (SRY) gene starts to be expressed, whereas in females the WNT4/ ß-catenin pathway promotes the differentiation of the GPCs towards ovaries. The interactions and dynamics of the elements that constitute the GSD network are poorly understood, thus our group is interested in inferring the general architecture of this network as well as modeling the dynamic behavior of a set of genes associated to this process under wild-type and mutant conditions. METHODS: We reconstructed the regulatory network of GSD with a set of genes directly associated with the process of differentiation from SPC and GPC towards Sertoli and granulosa cells, respectively. These genes are experimentally well-characterized and the effects of their deficiency have been clinically reported. We modeled this GSD network as a synchronous Boolean network model (BNM) and characterized its attractors under wild-type and mutant conditions. RESULTS: Three attractors with a clear biological meaning were found; one of them corresponding to the currently known gene expression pattern of Sertoli cells, the second correlating to the granulosa cells and, the third resembling a disgenetic gonad. CONCLUSIONS: The BNM of GSD that we present summarizes the experimental data on the pathways for Sertoli and granulosa establishment and sheds light on the overall behavior of a population of cells that differentiate within the developing gonad. With this model we propose a set of regulatory interactions needed to activate either the SRY or the WNT4/ ß-catenin pathway as well as their downstream targets, which are critical for further sex differentiation. In addition, we observed a pattern of altered regulatory interactions and their dynamics that lead to some disorders of sex development (DSD).


Assuntos
Modelos Biológicos , Processos de Determinação Sexual , Diferenciação Celular , Linhagem da Célula , Transtorno 46,XY do Desenvolvimento Sexual/patologia , Feminino , Fator de Transcrição GATA4/metabolismo , Gônadas , Células da Granulosa/citologia , Humanos , Masculino , Células de Sertoli/citologia
11.
Theor Biol Med Model ; 12: 19, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26385365

RESUMO

BACKGROUND: The FA/BRCA pathway repairs DNA interstrand crosslinks. Mutations in this pathway cause Fanconi anemia (FA), a chromosome instability syndrome with bone marrow failure and cancer predisposition. Upon DNA damage, normal and FA cells inhibit the cell cycle progression, until the G2/M checkpoint is turned off by the checkpoint recovery, which becomes activated when the DNA damage has been repaired. Interestingly, highly damaged FA cells seem to override the G2/M checkpoint. In this study we explored with a Boolean network model and key experiments whether checkpoint recovery activation occurs in FA cells with extensive unrepaired DNA damage. METHODS: We performed synchronous/asynchronous simulations of the FA/BRCA pathway Boolean network model. FA-A and normal lymphoblastoid cell lines were used to study checkpoint and checkpoint recovery activation after DNA damage induction. The experimental approach included flow cytometry cell cycle analysis, cell division tracking, chromosome aberration analysis and gene expression analysis through qRT-PCR and western blot. RESULTS: Computational simulations suggested that in FA mutants checkpoint recovery activity inhibits the checkpoint components despite unrepaired DNA damage, a behavior that we did not observed in wild-type simulations. This result implies that FA cells would eventually reenter the cell cycle after a DNA damage induced G2/M checkpoint arrest, but before the damage has been fixed. We observed that FA-A cells activate the G2/M checkpoint and arrest in G2 phase, but eventually reach mitosis and divide with unrepaired DNA damage, thus resolving the initial checkpoint arrest. Based on our model result we look for ectopic activity of checkpoint recovery components. We found that checkpoint recovery components, such as PLK1, are expressed to a similar extent as normal undamaged cells do, even though FA-A cells harbor highly damaged DNA. CONCLUSIONS: Our results show that FA cells, despite extensive DNA damage, do not loss the capacity to express the transcriptional and protein components of checkpoint recovery that might eventually allow their division with unrepaired DNA damage. This might allow cell survival but increases the genomic instability inherent to FA individuals and promotes cancer.


Assuntos
Ciclo Celular , Dano ao DNA , Reparo do DNA , Anemia de Fanconi/patologia , Western Blotting , Neoplasias da Mama/patologia , Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Linhagem Celular , Reparo do DNA/efeitos dos fármacos , Densitometria , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , Mitomicina/farmacologia , Mutação/genética
12.
J Toxicol Environ Health A ; 78(10): 628-34, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26039680

RESUMO

Arsenic (As) exposure is a major risk for several types of cancer and metabolic diseases such as diabetes. The transcription factor nuclear factor erythroid 2-related factor (Nrf2) is a key mediator in the cellular defense against As-induced adverse effects. The -653G/A and -617C/A gene variants modulate expression levels of the Nrf2 coding gene (NFE2L2) and are postulated to be associated with several illnesses. In this study the functional effect of these polymorphisms was investigated in the cellular sensitivity to As-mediated effects. Using quantitative real-time polymerase chain reaction (qRT-PCR) the basal levels of NFE2L2 mRNA and the induced levels of NFE2L2 and its target gene NQO1 were measured in lymphoblastoid cells carrying different genotypes for -653G/A and -617C/A polymorphisms following As exposure. The effects of different NFE2L2 gene genotypes on cell proliferation were also explored after chronic metal exposure. A tendency toward reduction in basal levels of NFE2L2 mRNA was noted in the heterozygous (GA/CA) and risk homozygous (AA/AA) genotypes of both polymorphisms in immortalized lymphoblastoid cells. Although the expression of NFE2L2 and NQO1 after acute acute iAs exposure was not markedly influenced by -653G/A and -617C/A genotype, it was found that these single-nucleotide polymorphisms (SNPs) were correlated with a differential sensitivity to chronic exposure to the metalloid. Further studies are needed to completely understand the role of -653G/A and -617C/A SNPs in regulation of the NFE2L2 gene.


Assuntos
Arsênio/toxicidade , Poluentes Ambientais/toxicidade , Fator 2 Relacionado a NF-E2/genética , Polimorfismo de Nucleotídeo Único , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Genótipo , Humanos , Linfócitos/citologia , NAD(P)H Desidrogenase (Quinona)/genética , NAD(P)H Desidrogenase (Quinona)/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
13.
Methods Mol Biol ; 2825: 247-262, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38913314

RESUMO

Hodgkin lymphoma (HL) is one of the most common lymphomas, with an incidence of 3 per 100,000 persons. Current treatment uses a cocktail of genotoxic agents, including adriamycin, bleomycin, vinblastine, and dacarbazine (ABVD), along with or without radiotherapy. This treatment regimen has proved to be efficient in killing cancer cells, resulting in HL patients having a survival rate of >90% cancer-free survival at five years. However, this therapy does not have a specific cell target, and it can induce damage in the genome of non-cancerous cells. Previous studies have shown that HL survivors often exhibit karyotypes characterized by complex chromosomal abnormalities that are difficult to analyze by conventional banding. Multicolor fluorescence in situ hybridization (M-FISH) is a powerful tool to analyze complex karyotypes; we used M-FISH to investigate the presence of chromosomal damage in peripheral blood lymphocytes from five healthy individuals and five HL patients before, during, and one year after anti-cancer treatment. Our results show that this anti-cancer treatment-induced genomic chaos that persists in the hematopoietic stem cells from HL patients one year after finishing therapy. This chromosomal instability may play a role in the occurrence of second primary cancers that are observed in 10% of HL survivors. This chapter will describe a protocol for utilizing M-FISH to study treatment-induced genome chaos in Hodgkin's lymphoma (HL) patients, following a brief discussion.


Assuntos
Doença de Hodgkin , Hibridização in Situ Fluorescente , Doença de Hodgkin/genética , Doença de Hodgkin/terapia , Humanos , Hibridização in Situ Fluorescente/métodos , Aberrações Cromossômicas/efeitos da radiação , Doxorrubicina/uso terapêutico , Genoma Humano , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Instabilidade Cromossômica , Linfócitos/efeitos da radiação , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Bleomicina/uso terapêutico
14.
Methods Mol Biol ; 2825: 213-237, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38913312

RESUMO

Three-dimensional structured illumination microscopy (3D-SIM) and fluorescence in situ hybridization on three-dimensional preserved cells (3D-FISH) have proven to be robust and efficient methodologies for analyzing nuclear architecture and profiling the genome's topological features. These methods have allowed the simultaneous visualization and evaluation of several target structures at super-resolution. In this chapter, we focus on the application of 3D-SIM for the visualization of 3D-FISH preparations of chromosomes in interphase, known as Chromosome Territories (CTs). We provide a workflow and detailed guidelines for sample preparation, image acquisition, and image analysis to obtain quantitative measurements for profiling chromosome topological features. In parallel, we address a practical example of these protocols in the profiling of CTs 9 and 22 involved in the translocation t(9;22) in Chronic Myeloid Leukemia (CML). The profiling of chromosome topological features described in this chapter allowed us to characterize a large-scale topological disruption of CTs 9 and 22 that correlates directly with patients' response to treatment and as a possible potential change in the inheritance systems. These findings open new insights into how the genome structure is associated with the response to cancer treatments, highlighting the importance of microscopy in analyzing the topological features of the genome.


Assuntos
Imageamento Tridimensional , Hibridização in Situ Fluorescente , Humanos , Hibridização in Situ Fluorescente/métodos , Imageamento Tridimensional/métodos , Translocação Genética , Cromossomos/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Interfase/genética , Cromossomos Humanos/genética , Processamento de Imagem Assistida por Computador/métodos
15.
PLoS One ; 19(5): e0298032, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38820384

RESUMO

The FA/BRCA pathway safeguards DNA replication by repairing interstrand crosslinks (ICL) and maintaining replication fork stability. Chromatin structure, which is in part regulated by histones posttranslational modifications (PTMs), has a role in maintaining genomic integrity through stabilization of the DNA replication fork and promotion of DNA repair. An appropriate balance of PTMs, especially acetylation of histones H4 in nascent chromatin, is required to preserve a stable DNA replication fork. To evaluate the acetylation status of histone H4 at the replication fork of FANCA deficient cells, we compared histone acetylation status at the DNA replication fork of isogenic FANCA deficient and FANCA proficient cell lines by using accelerated native immunoprecipitation of nascent DNA (aniPOND) and in situ protein interactions in the replication fork (SIRF) assays. We found basal hypoacetylation of multiple residues of histone H4 in FA replication forks, together with increased levels of Histone Deacetylase 1 (HDAC1). Interestingly, high-dose short-term treatment with mitomycin C (MMC) had no effect over H4 acetylation abundance at the replication fork. However, chemical inhibition of histone deacetylases (HDAC) with Suberoylanilide hydroxamic acid (SAHA) induced acetylation of the FANCA deficient DNA replication forks to levels comparable to their isogenic control counterparts. This forced permanence of acetylation impacted FA cells homeostasis by inducing DNA damage and promoting G2 cell cycle arrest. Altogether, this caused reduced RAD51 foci formation and increased markers of replication stress, including phospho-RPA-S33. Hypoacetylation of the FANCA deficient replication fork, is part of the cellular phenotype, the perturbation of this feature by agents that prevent deacetylation, such as SAHA, have a deleterious effect over the delicate equilibrium they have reached to perdure despite a defective FA/BRCA pathway.


Assuntos
Dano ao DNA , Replicação do DNA , Proteína do Grupo de Complementação A da Anemia de Fanconi , Histonas , Histonas/metabolismo , Humanos , Replicação do DNA/efeitos dos fármacos , Acetilação/efeitos dos fármacos , Proteína do Grupo de Complementação A da Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação A da Anemia de Fanconi/genética , Mitomicina/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Vorinostat/farmacologia , Ácidos Hidroxâmicos/farmacologia
16.
Bioinformatics ; 28(6): 858-66, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22267503

RESUMO

MOTIVATION: Fanconi anemia (FA) is a chromosomal instability syndrome originated by inherited mutations that impair the Fanconi Anemia/Breast Cancer (FA/BRCA) pathway, which is committed to the repair of DNA interstrand cross-links (ICLs). The disease displays increased spontaneous chromosomal aberrations and hypersensitivity to agents that create DNA interstrand cross-links. In spite of DNA damage, FA/BRCA-deficient cells are able to progress throughout the cell cycle, probably due to the activity of alternative DNA repair pathways, or due to defects in the checkpoints that monitor DNA integrity. RESULTS: We propose a Boolean network model of the FA/BRCA pathway, Checkpoint proteins and some alternative DNA repair pathways. To our knowledge, this is the largest network model incorporating a DNA repair pathway. Our model is able to simulate the ICL repair process mediated by the FA/BRCA pathway, the activation of Checkpoint proteins observed by recurrent DNA damage, as well as the repair of DNA double-strand breaks and DNA adducts. We generated a series of simulations for mutants, some of which have never been reported and thus constitute predictions about the function of the FA/BRCA pathway. Finally, our model suggests alternative DNA repair pathways that become active whenever the FA/BRCA pathway is defective.


Assuntos
Reparo do DNA , Anemia de Fanconi/metabolismo , Modelos Biológicos , Proteína BRCA1/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Ciclo Celular , Células Cultivadas , Dano ao DNA , Anemia de Fanconi/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Instabilidade Genômica , Humanos
17.
Mol Cytogenet ; 16(1): 2, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36631885

RESUMO

BACKGROUND: The human genome presents variation at distinct levels, copy number variants (CNVs) are DNA segments of variable lengths that range from several base pairs to megabases and are present at a variable number of copies in human genomes. Common CNVs have no apparent influence on the phenotype; however, some rare CNVs have been associated with phenotypic traits, depending on their size and gene content. CNVs are detected by microarrays of different densities and are generally visualized, and their frequencies analysed using the HapMap as default reference population. Nevertheless, this default reference is inadequate when the samples analysed are from people from Mexico, since population with a Hispanic genetic background are minimally represented. In this work, we describe the variation in the frequencies of four common CNVs in Mexican-Mestizo individuals. RESULTS: In a cohort of 147 unrelated Mexican-Mestizo individuals, we found that the common CNVs 2p11.2 (99.6%), 8p11.22 (54.5%), 14q32.33 (100%), and 15q11.2 (71.1%) appeared with unexpectedly high frequencies when contrasted with the HapMap reference (ChAS). Yet, while when comparing to an ethnically related reference population, these differences were significantly reduced or even disappeared. CONCLUSION: The findings in this work contribute to (1) a better description of the CNVs characteristics of the Mexican Mestizo population and enhance the knowledge of genome variation in different ethnic groups. (2) emphasize the importance of contrasting CNVs identified in studied individuals against a reference group that-as best as possible-share the same ethnicity while keeping this relevant information in mind when conducting CNV studies at the population or clinical level.

18.
Front Genet ; 14: 1293929, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38327701

RESUMO

Introduction: The inherited bone marrow failure syndromes (IBMFSs) are a group of rare disorders characterized by bone marrow failure (BMF), physical abnormalities, and an increased risk of neoplasia. The National Institute of Pediatrics (INP) is a major medical institution in Mexico, where patients with BMF receive a complete approach that includes paraclinical tests. Readily recognizable features, such as the hematological and distinctive physical phenotypes, identified by clinical dysmorphologists, remain crucial for the diagnosis and management of these patients, particularly in circumstances where next-generation sequencing (NGS) is not easily available. Here, we describe a group of Mexican patients with a high clinical suspicion of an IBMFS. Methods: We performed a systematic retrospective analysis of the medical records of patients who had a high IBMFS suspicion at our institution from January 2018 to July 2021. An initial assessment included first ruling out acquired causes of BMF by the Hematology Department and referral of the patient to the Department of Human Genetics for physical examination to search for specific phenotypes suggesting an IBMFS. Patients with high suspicion of having an IBMFS were classified into two main groups: 1) specific IBMFS, including dyskeratosis congenita (DC), Diamond-Blackfan anemia (DBA), Shwachman-Diamond syndrome (SDS), thrombocytopenia with absent radii (TAR), and severe congenital neutropenia (SCN); 2) undefined IBMFS (UI). Results: We established a high suspicion of having an IBMFS in 48 patients. At initial evaluation, the most common hematologic features were bicytopenia (20%) and aplastic anemia (16%); three patients received hematopoietic stem cell transplantation. Among patients with a suspicion of an IBMFS, the most common physical abnormality was minor craniofacial features in 83% of patients and neurodevelopmental disorders in 52%. The specific suspicions that we built were DBA (31%), SDS (18%), DC (14%), TAR (4%), and SCN (4%), whereas 27% of cases remained as undefined IBMFS. SDS, TAR, and SCN were more commonly suspected at an earlier age (<1 year), followed by DBA (2 years) and DC (5 years). Conclusions: Thorough examination of reported clinical data allowed us to highly suspect a specific IBMFS in approximately 70% of patients; however, an important number of patients remained with suspicion of an undefined IBMFS. Implementation of NGS and telomere length measurement are forthcoming measures to improve IBMFS diagnosis in Mexico.

19.
Front Oncol ; 12: 949435, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091172

RESUMO

Inherited bone marrow failure syndromes (IBMFS) are a complex and heterogeneous group of genetic diseases. To date, at least 13 IBMFS have been characterized. Their pathophysiology is associated with germline pathogenic variants in genes that affect hematopoiesis. A couple of these diseases also have genomic instability, Fanconi anemia due to DNA damage repair deficiency and dyskeratosis congenita/telomere biology disorders as a result of an alteration in telomere maintenance. Patients can have extramedullary manifestations, including cancer and functional or structural physical abnormalities. Furthermore, the phenotypic spectrum varies from cryptic features to patients with significantly evident manifestations. These diseases require a high index of suspicion and should be considered in any patient with abnormal hematopoiesis, even if extramedullary manifestations are not evident. This review describes the disrupted cellular processes that lead to the affected maintenance of the genome structure, contrasting the dysmorphological and oncological phenotypes of Fanconi anemia and dyskeratosis congenita/telomere biology disorders. Through a dysmorphological analysis, we describe the phenotypic features that allow to make the differential diagnosis and the early identification of patients, even before the onset of hematological or oncological manifestations. From the oncological perspective, we analyzed the spectrum and risks of cancers in patients and carriers.

20.
Rev Invest Clin ; 63(1): 53-63, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21574543

RESUMO

Hodgkin's disease has been treated mainly with two chemotherapy schedules, MOPP (nitrogen mustard, Oncovin, procarbazine and prednisone), which includes alkylating agents, and ABVD (adriamycin, bleomycin, vinblastine and dacarbazine), which includes topoisomerase II inhibitors, either with or without radiation therapy. Due to the types of agents used, patients with Hodgkin's disease often develop secondary leukemias. The alkylating agents included in the MOPP scheme were the first drugs associated with the development of therapy-related myelodysplastic syndrome (t-MDS) and acute myeloid leukemia (t-AML); both entities are the result of the clonal selection of cells with accumulated genomic lesions induced by antineoplastic therapy. In patients who developed t-MDS and t-AML, eight alternative routes with specific cytogenetic and molecular changes have been identified, and the routes are related to the type of therapy, alkylating agents or DNA topoisomerase II inhibitors. At the cytogenetic level, patients treated with alkylating agents show deletion 5q/monosomy 5 and deletion 7q/monosomy 7; in contrast, those who were treated with topoisomerase II inhibitors show 11q23 translocations involving the MLL gene. At the molecular level, there are two types of mutations: Class I, which alter the RAS-BRAF signal transduction pathways and increase cell proliferation; Class II, which disrupt genes that encode transcription factors and NPM1 that are involved in cell differentiation, and the inactivation of p53 tumor suppressor gene. Knowledge of the genetic alterations in these conditions is important for the classification, treatment and prognosis of patients as well as essential for increasing the knowledge of the biology of these diseases, which leads to identifying potential therapeutic targets.


Assuntos
Aberrações Cromossômicas/induzido quimicamente , Doença de Hodgkin/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Alquilantes/efeitos adversos , Humanos , Cariotipagem , Nucleofosmina , Inibidores da Topoisomerase II/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa