Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Glycobiology ; 26(2): 203-14, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26525402

RESUMO

ß-1,2-Linked mannosides are expressed on numerous cell-wall glycoconjugates of the opportunistic pathogen yeast Candida albicans. Several studies evidenced their implication in the host-pathogen interaction and virulence mechanisms. In the present study, we characterized the in vitro activity of CaBmt3, a ß-1,2-mannosyltransferase involved in the elongation of ß-1,2-oligomannosides oligomers onto the cell-wall polymannosylated N-glycans. A recombinant soluble enzyme Bmt3p was produced in Pichia pastoris and its enzyme activity was investigated using natural and synthetic oligomannosides as potential acceptor substrates. Bmt3p was shown to exhibit an exquisite enzymatic specificity by adding a single terminal ß-mannosyl residue to α-1,2-linked oligomannosides capped by a Manß1-2Man motif. Furthermore, we demonstrated that the previously identified CaBmt1 and CaBmt3 efficiently act together to generate Manß1-2Manß1-2[Manα1-2]n sequence from α-1,2-linked oligomannosides onto exogenous and endogenous substrates.


Assuntos
Candida/enzimologia , Proteínas Fúngicas/metabolismo , Mananas/metabolismo , Manosiltransferases/metabolismo , Fosfopeptídeos/metabolismo , Candida/metabolismo , Parede Celular/metabolismo , Especificidade por Substrato
2.
Bioorg Med Chem ; 24(6): 1362-8, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26895658

RESUMO

We describe for the first time the chemical synthesis of a tetramannoside, containing both α (1→2) and ß (1→2) linkages. Dodecylthio (lauryl) glycosides were prepared from odorless dodecyl thiol and used as donors for the glycosylation steps. This tetramannoside, was coupled to a mantyl group, and revealed to be a perfect substrate of ß-mannosyltransferase Bmt3, confirming the proposed specificity and allowing the preparation of a pentamannoside sequence (ß Man (1,2) ß Man (1,2) α Man (1,2) α Man (1,2) α Man) usable as a novel substrate for further elongation studies.


Assuntos
Candida albicans/enzimologia , Corantes Fluorescentes/metabolismo , Manosídeos/metabolismo , Manosiltransferases/metabolismo , Corantes Fluorescentes/química , Manosídeos/química , Conformação Molecular , Especificidade por Substrato
3.
Biochem J ; 457(2): 347-60, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24138199

RESUMO

The presence of ß-mannosides in their cell walls confers specific features on the pathogenic yeasts Candida albicans and Candida glabrata compared with non-pathogenic yeasts. In the present study, we investigated the enzymatic properties of Bmt1 (ß-mannosyltransferase 1), a member of the recently identified ß-mannosyltransferase family, from C. albicans. A recombinant soluble enzyme lacking the N-terminal region was expressed as a secreted protein from the methylotrophic yeast Pichia pastoris. In parallel, functionalized natural oligosaccharides isolated from Saccharomyces cerevisiae and a C. albicans mutant strain, as well as synthetic α-oligomannosides, were prepared and used as potential acceptor substrates. Bmt1p preferentially utilizes substrates containing linear chains of α-1,2-linked mannotriose or mannotetraose. The recombinant enzyme consecuti-vely transfers two mannosyl units on to these acceptors, leading to the production of α-mannosidase-resistant oligomannosides. NMR experiments further confirmed the presence of a terminal ßMan (ß-1,2-linked mannose) unit in the first enzyme product. In the future, a better understanding of specific ß-1,2-mannosyltransferase molecular requirements will help the design of new potential antifungal drugs.


Assuntos
Candida albicans/enzimologia , Parede Celular/enzimologia , Mananas/química , Manosiltransferases/química , Fosfopeptídeos/química , Candida albicans/genética , Mananas/genética , Mananas/metabolismo , Manose/química , Manose/genética , Manose/metabolismo , Manosiltransferases/genética , Manosiltransferases/metabolismo , Fosfopeptídeos/genética , Fosfopeptídeos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
4.
Infect Immun ; 82(1): 306-15, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24166952

RESUMO

Pseudomonas aeruginosa and Candida albicans are two pathogens frequently encountered in the intensive care unit microbial community. We have demonstrated that C. albicans airway exposure protected against P. aeruginosa-induced lung injury. The goal of the present study was to characterize the cellular and molecular mechanisms associated with C. albicans-induced protection. Airway exposure by C. albicans led to the recruitment and activation of natural killer cells, innate lymphoid cells (ILCs), macrophages, and dendritic cells. This recruitment was associated with the secretion of interleukin-22 (IL-22), whose neutralization abolished C. albicans-induced protection. We identified, by flow cytometry, ILCs as the only cellular source of IL-22. Depletion of ILCs by anti-CD90.2 antibodies was associated with a decreased IL-22 secretion and impaired survival after P. aeruginosa challenge. Our results demonstrate that the production of IL-22, mainly by ILCs, is a major and inducible step in protection against P. aeruginosa-induced lung injury. This cytokine may represent a clinical target in Pseudomonas aeruginosa-induced lung injury.


Assuntos
Candida albicans/fisiologia , Imunidade Inata/imunologia , Interleucinas/imunologia , Lesão Pulmonar/microbiologia , Linfócitos/imunologia , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/imunologia , Análise de Variância , Animais , Candida albicans/imunologia , Células Dendríticas/imunologia , Modelos Animais de Doenças , Citometria de Fluxo , Imunidade Celular/imunologia , Imunidade Inata/fisiologia , Interleucinas/metabolismo , Células Matadoras Naturais/imunologia , Lesão Pulmonar/imunologia , Linfócitos/metabolismo , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Interleucina 22
5.
J Biol Chem ; 287(14): 11313-24, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22291009

RESUMO

Candida glabrata, like Candida albicans, is an opportunistic yeast pathogen that has adapted to colonize all segments of the human gastrointestinal tract and vagina. The C. albicans cell wall expresses ß-1,2-linked mannosides (ß-Mans), promoting its adherence to host cells and tissues. Because ß-Mans are also present in C. glabrata, their role in C. glabrata colonization and virulence was investigated in a murine model of dextran sulfate sodium (DSS)-induced colitis. Five clustered genes of C. glabrata encoding ß-mannosyltransferases, BMT2-BMT6, were deleted simultaneously. ß-Man expression was studied by Western blotting, flow cytometry, and NMR analysis. Mortality, clinical, histologic, and colonization scores were determined in mice receiving DSS and different C. glabrata strains. The results show that C. glabrata bmt2-6 strains had a significant reduction in ß-1,2-Man expression and a disappearance of ß-1,2-mannobiose in the acid-stable domain. A single gavage of C. glabrata wild-type strain in mice with DSS-induced colitis caused a loss of body weight, colonic inflammation, and mortality. Mice receiving C. glabrata bmt2-6 mutant strains had normal body weight and reduced colonic inflammation. Lower numbers of colonies of C. glabrata bmt2-6 were recovered from stools and different parts of the gastrointestinal tract. Histopathologic examination revealed that the wild-type strain had a greater ability to colonize tissue and cause tissue damage. These results showed that C. glabrata has a high pathogenic potential in DSS-induced colitis, where ß-Mans contribute to colonization and virulence.


Assuntos
Candida glabrata/enzimologia , Candida glabrata/patogenicidade , Colite/induzido quimicamente , Colite/microbiologia , Sulfato de Dextrana/efeitos adversos , Manosiltransferases/metabolismo , Animais , Candida glabrata/genética , Colo/microbiologia , Modelos Animais de Doenças , Feminino , Mucosa Intestinal/microbiologia , Manosiltransferases/genética , Camundongos , Mutação , Oligossacarídeos/metabolismo , Oxirredução
6.
Glycobiology ; 22(10): 1332-42, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22745283

RESUMO

A family of nine genes encoding proteins involved in the synthesis of ß-1,2 mannose adhesins of Candida albicans has been identified. Four of these genes, BMT1-4, encode enzymes acting stepwise to add ß-mannoses on to cell-wall phosphopeptidomannan (PPM). None of these acts on phospholipomannan (PLM), a glycosphingolipid member of the mannose-inositol-phosphoceramide family, which contributes with PPM to ß-mannose surface expression. We show that deletion of BMT5 and BMT6 led to a dramatic reduction of PLM glycosylation and accumulation of PLM with a truncated ß-oligomannoside chain, respectively. Disruptions had no effect on sphingolipid biosynthesis and on PPM ß-mannosylation. ß-Mannose surface expression was not affected, confirming that ß-mannosylation is a process based on specificity of acceptor molecules, but liable to global regulation.


Assuntos
Candida albicans/enzimologia , Parede Celular/química , Glicolipídeos/metabolismo , Mananas/metabolismo , Fosfopeptídeos/metabolismo , Acetiltransferases , Proteínas de Bactérias , Ativação Enzimática , Glicosilação , Especificidade da Espécie
7.
Infect Immun ; 79(12): 4902-11, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21930756

RESUMO

Oral epithelial cells discriminate between the yeast and hyphal forms of Candida albicans via the mitogen-activated protein kinase (MAPK) signaling pathway. This occurs through phosphorylation of the MAPK phosphatase MKP1 and activation of the c-Fos transcription factor by the hyphal form. Given that fungal cell wall polysaccharides are critical in host recognition and immune activation in myeloid cells, we sought to determine whether ß-glucan and N- or O-glycosylation was important in activating the MAPK/MKP1/c-Fos hypha-mediated response mechanism and proinflammatory cytokines in oral epithelial cells. Using a series of ß-glucan and N- and O-mannan mutants, we found that N-mannosylation (via Δoch1 and Δpmr1 mutants) and O-mannosylation (via Δpmt1 and Δmnt1 Δmnt2 mutants), but not phosphomannan (via a Δmnn4 mutant) or ß-1,2 mannosylation (via Δbmt1 to Δbmt6 mutants), were required for MKP1/c-Fos activation, proinflammatory cytokine production, and cell damage induction. However, the N- and O-mannan mutants showed reduced adhesion or lack of initial hypha formation at 2 h, resulting in little MKP1/c-Fos activation, or restricted hypha formation/pseudohyphal formation at 24 h, resulting in minimal proinflammatory cytokine production and cell damage. Further, the α-1,6-mannose backbone of the N-linked outer chain (corresponding to a Δmnn9 mutant) may be required for epithelial adhesion, while the α-1,2-mannose component of phospholipomannan (corresponding to a Δmit1 mutant) may contribute to epithelial cell damage. ß-Glucan appeared to play no role in adhesion, epithelial activation, or cell damage. In summary, N- and O-mannosylation defects affect the ability of C. albicans to induce proinflammatory cytokines and damage in oral epithelial cells, but this may be due to indirect effects on fungal pathogenicity rather than mannose residues being direct activators of the MAPK/MKP1/c-Fos hypha-mediated immune response.


Assuntos
Candida albicans/metabolismo , Parede Celular/metabolismo , Células Epiteliais/metabolismo , Candida albicans/ultraestrutura , Linhagem Celular Tumoral , Citocinas/metabolismo , Regulação da Expressão Gênica/fisiologia , Genes fos/fisiologia , Glicosilação , Humanos , Inflamação/metabolismo , Mananas/genética , Mananas/metabolismo , Manose/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Fosfatases da Proteína Quinase Ativada por Mitógeno/genética , Fosfatases da Proteína Quinase Ativada por Mitógeno/metabolismo
8.
Nutrients ; 13(12)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34959950

RESUMO

The impact of dietary advanced glycation end products (dAGEs) on human health has been discussed in many studies but, to date, no consensual pathophysiological process has been demonstrated. The intestinal absorption pathways which have so far been described for dAGEs, the passive diffusion of free AGE adducts and transport of glycated di-tripeptides by the peptide transporter 1 (PEPT-1), are not compatible with certain pathophysiological processes described. To get new insight into the intestinal absorption pathways and the pathophysiological mechanisms of dAGEs, we initiated an in vivo study with a so-called simple animal model with a complete digestive tract, Caenorhabditis elegans. Dietary bacteria were chemically modified with glyoxylic acid to mainly produce Nε-carboxymethyllysine (CML) and used to feed the worms. We performed different immunotechniques using an anti-CML antibody for the relative quantification of ingested CML and localization of this AGE in the worms' intestine. The relative expression of genes encoding different biological processes such as response to stresses and intestinal digestion were determined. The physiological development of the worms was verified. All the results were compared with those obtained with the control bacteria. The results revealed a new route for the intestinal absorption of dietary CML (dCML), endocytosis, which could be mediated by scavenger receptors. The exposure of worms to dCML induced a reproductive defect and a transcriptional response reflecting oxidative, carbonyl and protein folding stresses. These data, in particular the demonstration of endocytosis of dCML by enterocytes, open up new perspectives to better characterize the pathophysiological mechanisms of dAGEs.


Assuntos
Caenorhabditis elegans/metabolismo , Endocitose/efeitos dos fármacos , Produtos Finais de Glicação Avançada/efeitos adversos , Produtos Finais de Glicação Avançada/metabolismo , Absorção Intestinal/efeitos dos fármacos , Lisina/análogos & derivados , Animais , Enterócitos/metabolismo , Trato Gastrointestinal/metabolismo , Lisina/administração & dosagem , Lisina/efeitos adversos , Modelos Animais , Estresse Oxidativo/efeitos dos fármacos , Dobramento de Proteína/efeitos dos fármacos , Reprodução/efeitos dos fármacos
9.
Sci Rep ; 11(1): 10825, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34031516

RESUMO

Candida albicans mannan consists of a large repertoire of oligomannosides with different types of mannose linkages and chain lengths, which act as individual epitopes with more or less overlapping antibody specificities. Although anti-C. albicans mannan antibody levels are monitored for diagnostic purposes nothing is known about the qualitative distribution of these antibodies in terms of epitope specificity. We addressed this question using a bank of previously synthesized biotin sulfone tagged oligomannosides (BSTOs) of α and ß anomery complemented with a synthetic ß-mannotriose described as a protective epitope. The reactivity of these BSTOs was analyzed with IgM isotype monoclonal antibodies (MAbs) of known specificity, polyclonal sera from patients colonized or infected with C. albicans, and mannose binding lectin (MBL). Surface plasmon resonance (SPR) and multiple analyte profiling (MAP) were used. Both methods confirmed the usual reactivity of MAbs against either α or ß linkages, excepted for MAb B6.1 (protective epitope) reacting with ß-Man whereas the corresponding BSTO reacted with anti-α-Man. These results were confirmed in western blots with native C. albicans antigens. Using patients' sera in MAP, a significant correlation was observed between the detection of anti-mannan antibodies recognizing ß- and α-Man epitopes and detection of antibodies against ß-linked mannotriose suggesting that this epitope also reacts with human polyclonal antibodies of both specificities. By contrast, the reactivity of human sera with other α- and ß-linked BSTOs clearly differed according to their colonized or infected status. In these cases, the establishment of an α/ß ratio was extremely discriminant. Finally SPR with MBL, an important lectin of innate immunity to C. albicans, classically known to interact with α-mannose, also interacted in an unexpected way with the protective epitope. These cumulative data suggest that structure/activity investigations of the finely tuned C. albicans anti-mannose immune response are worthwhile to increase our basic knowledge and for translation in medicine.


Assuntos
Anticorpos Monoclonais/sangue , Candida albicans/imunologia , Candidíase/imunologia , Mananas/imunologia , Especificidade de Anticorpos , Antígenos de Fungos/sangue , Candidíase/sangue , Mapeamento de Epitopos , Mananas/química , Oligossacarídeos/análise , Ressonância de Plasmônio de Superfície , Trissacarídeos/química , Trissacarídeos/imunologia
10.
Microorganisms ; 9(9)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34576719

RESUMO

The adherent-invasive Escherichia coli (AIEC) pathotype has been implicated in the pathogenesis of inflammatory bowel diseases in general and in Crohn's disease (CD) in particular. AIEC strains are primarily characterized by their ability to adhere to and invade intestinal epithelial cells. However, the genetic and phenotypic features of AIEC isolates vary greatly as a function of the strain's clonality, host factors, and the gut microenvironment. It is thus essential to identify the determinants of AIEC pathogenicity and understand their role in intestinal epithelial barrier dysfunction and inflammation. We reasoned that soil nematode Caenorhabditis elegans (a simple but powerful model of host-bacterium interactions) could be used to study the virulence of AIEC vs. non- AIEC E. coli strains. Indeed, we found that the colonization of C. elegans (strain N2) by E. coli impacted survival in a strain-specific manner. Moreover, the AIEC strains' ability to invade cells in vitro was linked to the median lifespan in C. elegans (strain PX627). However, neither the E. coli intrinsic invasiveness (i.e., the fact for an individual strain to be characterized as invasive or not) nor AIEC's virulence levels (i.e., the intensity of invasion, established in % from the infectious inoculum) in intestinal epithelial cells was correlated with C. elegans' lifespan in the killing assay. Nevertheless, AIEC longevity of C. elegans might be a relevant model for screening anti-adhesion drugs and anti-invasive probiotics.

11.
Cell Microbiol ; 11(7): 1007-15, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19388906

RESUMO

The molecular interactions between commensal microorganisms and their host are basically different from those triggered by pathogens since they involve tolerance. When the commensal is genetically equipped to become an opportunistic pathogen, as is the case with Candida albicans, the picture becomes more complex. In this case, the balance between protection and invasion depends on host reactivity to altered microbial expression of ligands interacting with innate immune sensors. Based on experimental evidence obtained with C. albicans, we discuss the different molecular processes involved in the sensing of this important opportunistic human pathogen by a panel of pattern recognition receptors (PRRs) according to the numerous pathogen-associated molecular patterns (PAMPs) that can be exposed at its surface. Beneficial or deleterious immune responses that either maintain a commensal state or favour damage by the yeast result from this dynamic interplay.


Assuntos
Candida albicans/imunologia , Interações Hospedeiro-Patógeno/imunologia , Tolerância Imunológica , Receptores de Reconhecimento de Padrão/imunologia , Candidíase/imunologia , Portador Sadio/imunologia , Humanos
12.
FEMS Yeast Res ; 9(5): 688-700, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19473261

RESUMO

The human pathogenic yeast Candida albicans can cause an unusually broad range of infections reflecting a remarkable potential to adapt to various microniches within the human host. The exceptional adaptability of C. albicans is mediated by rapid alterations in gene expression in response to various environmental stimuli and this transcriptional flexibility can be monitored with tools such as microarrays. Using such technology it is possible to (1) capture a genome-wide portrait of the transcriptome that mirrors the environmental conditions, (2) identify known genes, signalling pathways and transcription factors involved in pathogenesis, (3) identify new patterns of gene expression and (4) identify previously uncharacterized genes that may be associated with infection. In this review, we describe the molecular dissection of three distinct stages of infections, covering both superficial and invasive disease, using in vitro, ex vivo and in vivo infection models and microarrays.


Assuntos
Candida albicans/patogenicidade , Candidíase/microbiologia , Proteínas Fúngicas/genética , Fatores de Virulência/genética , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Humanos
13.
Dig Dis ; 27 Suppl 1: 104-10, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20203505

RESUMO

BACKGROUND: Current research on Crohn's disease (CD) concerns molecular events related to loss of tolerance to microbes that could trigger or maintain inflammation in genetically susceptible individuals. CD is also associated with antimicrobial antibodies, including the antibodies we described against yeast oligomannosides (ASCA). This prompted us to investigate a role for another yeast, Candida albicans, a very common commensal of the human digestive tract and an important opportunistic pathogen. CLINICAL AND EXPERIMENTAL DATA: It has been revealed that the major oligomannose epitopes supporting ASCA are expressed by C. albicans in human tissues, suggesting that C. albicans is the immunogen for ASCA. This link has been reinforced by the demonstration that novel serological markers of CD (ALCA and ACCA), consisting of antibodies against chitin and glucan (two components of the C. albicans cell wall), are also generated during C. albicans infection. Mycological investigation of families with multiple cases of CD shows that patients with CD and their healthy relatives are colonized with C. albicans more commonly than control families. In healthy relatives, C. albicans colonization correlates with ASCA levels, whereas the onset of CD is associated with ASCA stability and is independent of the C. albicans intestinal load. Experimental studies show that chemically-induced colitis promotes C. albicans colonization in mice. In turn, C. albicans colonization generates ASCA, increases inflammation, histological scores and pro-inflammatory cytokine expression. PERSPECTIVES: Current investigations focus on interactions of TLRs and lectins with yeast epitopes that differently polarize the immune response to C. albicans cell wall glycans, which are the targets of an 'excessive' adaptive response associated with CD.


Assuntos
Candida albicans/imunologia , Doença de Crohn/microbiologia , Animais , Anticorpos Antifúngicos/imunologia , Candidíase/sangue , Candidíase/diagnóstico , Candidíase/microbiologia , Parede Celular/metabolismo , Doença de Crohn/sangue , Doença de Crohn/diagnóstico , Humanos , Camundongos , Saccharomyces cerevisiae/imunologia
14.
Med Sci (Paris) ; 25(5): 473-81, 2009 May.
Artigo em Francês | MEDLINE | ID: mdl-19480828

RESUMO

Almost 80 % of the dry weight of the yeast cell wall is composed of glycans including mannans, glucans and chitin. Within this variable and complex edifice, glycans play a major role in their relation with the environment. Experimental antibodies allowed to define the localization, the variability of expression and the biological role of numerous natural oligosaccharidic sequences. These glycans and their synthetic analogues were used to study the human humoral response during invasive candidiasis (IC) determined by Candida albicans and Crohn's disease (CD) where antibodies against the dietary yeast Saccharomyces cerevisiae have been reported. On these bases, it was established experimentally and clinically that a large panel of CD biomarkers consisting in anti glycans antibodies were also generated during IC establishing a link never suspected between C. albicans and CD. We describe here the principle of this serological analysis and its perspectives related to the use of multianalyte profiling technology for a a better understanding of IC and CD pathophysiology. This may contribute to improve disease management in terms of diagnosis and therapy.


Assuntos
Anticorpos Antifúngicos/imunologia , Antígenos de Fungos/imunologia , Autoanticorpos/imunologia , Candida albicans/imunologia , Candidíase/imunologia , Doença de Crohn/imunologia , Polissacarídeos/imunologia , Especificidade de Anticorpos , Sequência de Carboidratos , Parede Celular/imunologia , Doença de Crohn/etiologia , Reações Cruzadas , Epitopos/imunologia , Feminino , Humanos , Intestinos/microbiologia , Mananas/química , Mananas/imunologia , Mimetismo Molecular , Dados de Sequência Molecular , Polissacarídeos/química , Saccharomyces cerevisiae/imunologia , Vagina/microbiologia
15.
Aging Cell ; 18(2): e12850, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30794349

RESUMO

Pro-aging effects of endogenous advanced glycation end-products (AGEs) have been reported, and there is increasing interest in the pro-inflammatory and -fibrotic effects of their binding to RAGE (the main AGE receptor). The role of dietary AGEs in aging remains ill-defined, but the predominantly renal accumulation of dietary carboxymethyllysine (CML) suggests the kidneys may be particularly affected. We studied the impact of RAGE invalidation and a CML-enriched diet on renal aging. Two-month-old male, wild-type (WT) and RAGE-/- C57Bl/6 mice were fed a control or a CML-enriched diet (200 µg CML/gfood ) for 18 months. Compared to controls, we observed higher CML levels in the kidneys of both CML WT and CML RAGE-/- mice, with a predominantly tubular localization. The CML-rich diet had no significant impact on the studied renal parameters, whereby only a trend to worsening glomerular sclerosis was detected. Irrespective of diet, RAGE-/- mice were significantly protected against nephrosclerosis lesions (hyalinosis, tubular atrophy, fibrosis and glomerular sclerosis) and renal senile apolipoprotein A-II (ApoA-II) amyloidosis (p < 0.001). A positive linear correlation between sclerosis score and ApoA-II amyloidosis score (r = 0.92) was observed. Compared with old WT mice, old RAGE-/- mice exhibited lower expression of inflammation markers and activation of AKT, and greater expression of Sod2 and SIRT1. Overall, nephrosclerosis lesions and senile amyloidosis were significantly reduced in RAGE-/- mice, indicating a protective effect of RAGE deletion with respect to renal aging. This could be due to reduced inflammation and oxidative stress in RAGE-/- mice, suggesting RAGE is an important receptor in so-called inflamm-aging.


Assuntos
Envelhecimento/metabolismo , Nefropatias/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Animais , Nefropatias/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor para Produtos Finais de Glicação Avançada/deficiência
16.
Infect Immun ; 76(10): 4509-17, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18644880

RESUMO

Beta-1,2-linked mannosides (beta-Mans) are believed to contribute to Candida albicans virulence. The presence of beta-Mans has been chemically established for two molecules (phosphopeptidomannan [PPM] and phospholipomannan) that are noncovalently linked to the cell wall, where they correspond to specific epitopes. However, a large number of cell wall mannoproteins (CWMPs) also express beta-Man epitopes, although their nature and mode of beta-mannosylation are unknown. We therefore used Western blotting to map beta-Man epitopes for the different families of mannoproteins gradually released from the cell wall according to their mode of anchorage (soluble, released by dithiothreitol, beta-1,3 glucan linked, and beta-1,6 glucan linked). Reduction of beta-Man epitope expression occurred after chemical and enzymatic deglycosylation of the different cell wall fractions, as well as in a secreted form of Hwp1, a representative of the CWMPs linked by glycosylphosphatidylinositol remnants. Enzyme-linked immunosorbent assay inhibition tests were performed to assess the presence of beta-Man epitopes in released oligomannosides. A comparison of the results obtained with CWMPs to the results obtained with PPM and the use of mutants with mutations affecting O and N glycosylation demonstrated that both O glycosylation and N glycosylation participate in the association of beta-Mans with the protein moieties of CWMPs. This process, which can alter the function of cell wall molecules and their recognition by the host, is therefore more important and more complex than originally thought, since it differs from the model established previously with PPM.


Assuntos
Candida albicans/imunologia , Parede Celular/imunologia , Epitopos/imunologia , Proteínas Fúngicas/imunologia , Glicoproteínas de Membrana/imunologia , Fatores de Virulência/imunologia , Anticorpos Antifúngicos/metabolismo , Anticorpos Monoclonais/metabolismo , Western Blotting , Candida albicans/química , Parede Celular/química , Ensaio de Imunoadsorção Enzimática , Mapeamento de Epitopos , Proteínas Fúngicas/química , Glicosilação , Manosídeos/imunologia , Glicoproteínas de Membrana/química , Ligação Proteica , Fatores de Virulência/química
17.
Med Sci (Paris) ; 34(6-7): 571-579, 2018.
Artigo em Francês | MEDLINE | ID: mdl-30067200

RESUMO

Aging is a physiological and complex process associated with increasing age of living organisms. Simple model organisms have brought significant advances in our understanding of the aging process. Caenorhabditis elegans, a nematode originally used to establish the genetic and molecular basis of development, has become one of the leading model organisms for research on aging. This invertebrate has allowed identifying a connection between cellular signaling pathways and longevity. Although C. elegans is not suitable for analysis of the complete process of human aging, it remains a model of choice to analyze specific aging mechanisms and phenotypes.


Assuntos
Envelhecimento/patologia , Caenorhabditis elegans/fisiologia , Modelos Animais , Envelhecimento/genética , Animais , Humanos , Longevidade/genética
18.
Front Microbiol ; 9: 2907, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619103

RESUMO

Background: The link between Candida phenotypical characteristics and invasive candidiasis (IC) prognosis is still partially unknown. Methods: Candida strains isolated during the AmarCAND2 study were centrally analyzed for species identification, antifungal susceptibility, biofilm formation, and expression of surface and glycoconjugate mannosides. Correlation between these phenotypical features and patient outcome was sought using a multivariable Cox survival model. Results: Candida albicans was predominant (65.4%, n = 285), with a mortality rate significantly lower than that in patients with non-albicans strains [HR 0.67 (0.46-1.00), p = 0.048]. The rate of fluconazole-resistant strains was low (C. albicans and Candida glabrata: 3.5 and 6.2%, respectively) as well as caspofungin-resistant ones (1 and 3.1%, respectively). Early biofilm formation was less frequent among C. albicans (45.4%) than among non-albicans (81.2%). While the strains of C. albicans showed variable levels of surface mannosides expression, strains isolated from candidemia exhibited a high expression of ß-man, which was correlated with an increased mortality (p = 0.02). Conclusion: Candida albicans IC were associated with lower mortality, and with strains that exhibited less frequently early biofilm formation than non-albicans strains. A high expression of ß-man was associated with increased IC mortality. Further studies are warranted to confirm this data and to evaluate other virulence factors in yeasts.

19.
J Interferon Cytokine Res ; 36(4): 267-76, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27046240

RESUMO

Despite the fact that Candida albicans is an important human fungal pathogen and Dectin-2 is a major pattern recognition receptor for fungi, our knowledge regarding the role of Dectin-2 for the host defense against disseminated candidiasis is limited. Dectin-2 deficient (Dectin-2(-/-)) mice were more susceptible to systemic candidiasis, and the susceptibility was mirrored by an elevated fungal load in the kidneys that correlated with the presence of large inflammatory foci. Phagocytosis of Candida by the macrophages lacking the Dectin-2 receptor was moderately decreased, while production of most of the macrophage-derived cytokines from Dectin-2(-/-) mice with systemic candidiasis was decreased. No striking differences among several Candida mutants defective in mannans could be detected between naïve wild-type and Dectin-2(-/-) mice, apart from the ß-mannan-deficient bmt1Δ/bmt2Δ/bmt5Δ triple mutant, suggesting that ß-mannan may partially mask α-mannan detection, which is the major fungal structure recognized by Dectin-2. Deciphering the mechanisms responsible for host defense against the majority of C. albicans strains represents an important step in understanding the pathophysiology of systemic candidiasis, which might lead to the development of novel immunotherapeutic strategies.


Assuntos
Candida albicans/fisiologia , Candidíase/imunologia , Rim/imunologia , Lectinas Tipo C/metabolismo , Macrófagos/fisiologia , Animais , Candidíase/microbiologia , Células Cultivadas , Modelos Animais de Doenças , Feminino , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata/genética , Rim/microbiologia , Lectinas Tipo C/genética , Macrófagos/microbiologia , Mananas/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação/genética , Fagocitose/genética
20.
Semin Immunopathol ; 37(2): 123-30, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25394861

RESUMO

Fungal cell walls contain several types of glycans, which play important roles in the pathogenesis of fungal infection and host immune response. Among them, glycosphingolipids have attracted much attention lately since they contribute actively to the fungi development and fungal-induced pathogenesis. Although glycosphingolipids are present in pathogenic and non-pathogenic fungi, pathogenic strains exhibit distinct glycan structures on their sphingolipids, which contribute to the regulatory processes engaged in inflammatory response. In Candida albicans, phospholipomannan (PLM) represents a prototype of these sphingolipids. Through its glycan and lipid moieties, PLM induces activation of host signaling pathways involved in the initial recognition of fungi, causing immune system disorder and persistent fungal disease. In this review, first we describe the general aspects of C. albicans sphingolipids synthesis with a special emphasize on PLM synthesis and its insertion into the cell wall. Then, we discuss the role of PLM glycosylation in regulating immune system activation and its contribution to the chronic persistent inflammation found in Candida infections and chronic inflammatory diseases.


Assuntos
Candida albicans/imunologia , Candida albicans/metabolismo , Candidíase/imunologia , Candidíase/metabolismo , Glicolipídeos/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Candida albicans/patogenicidade , Glicoesfingolipídeos/biossíntese , Humanos , Imunomodulação , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Polissacarídeos/imunologia , Polissacarídeos/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Transdução de Sinais , Esfingolipídeos/biossíntese
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa